This paper introduces a new approach to sequential quadratic programming. Upon application of the orthogonal-decomposition algorithm and the Gerschgorin Theorem for the stabilization of the Hessian matrix in the quadratic-programming solution, this novel approach offers an alternative to existing methods that, additionally, dispenses with a feasible initial guess.
Issue Section:
Technical Papers
1.
Rao, S. S., 1996, Engineering Optimization, John Wiley & Sons, Inc., New York.
2.
Fox
, R. L.
, and Gupta
, K. C.
, 1973
, “Optimization Technology as Applied to Mechanism Design
,” ASME J. Eng. Ind.
, 95
, pp. 657
–661
.3.
Mangasarian
, O. L.
, 1972
, “Techniques of Optimization
,” ASME J. Eng. Ind.
, 93
, pp. 365
–371
.4.
Seireg
, A.
, 1972
, “A Survey of Optimization of Mechanical Design
,” ASME J. Eng. Ind.
, 94
, pp. 495
–499
.5.
Boot, C. G., 1964, Quadratic Programming, N. Holland Publishing Co., Amsterdam.
6.
Strang, G., 1986, Introduction to Applied Mathematics, Wellesley-Cambridge Press, Wellesley, MA.
7.
Broyden
, C. G.
, 1970
, “The Convergence of a Class of Double-Rank Minimization Algorithm
,” J. Inst. Math. Appl.
, 6
, pp. 76
–90
.8.
Fletcher, R., 1987, Practical Methods of Optimization, John Wiley & Sons, Chichester, New York.
9.
Goldfarb
, D.
, 1970
, “A Family of Variable Metric Updates Derived by Variational Means
,” Math. Comput.
, 24
, pp. 23
–26
.10.
Shanno
, D. F.
, 1970
, “Conditioning of Quasi-Newton Methods for Function Minimization
,” Math. Comput.
, 24
, pp. 647
–656
.11.
Varga, R. S., 2000, Matrix Iterative Analysis, Second Edition, Springer, Berlin-Heidelberg, New York.
12.
Angeles
, J. Anderson
, and Gosselin
, C.
, 1990
, “Constrained Design Optimization Using Orthogonal Decomposition
,” ASME J. Mech., Transm., Autom. Des.
, 112
, No. 2
, pp. 255
–256
.13.
Coster
, J. E.
, and Stander
, N.
, 1996
, “Structural Optimization Using Augmented Lagrangian Methods with Secant Hessian Updating
,” Struct. Optim.
, 12
, pp. 113
–119
.14.
Gere, J. M., and Timoshenko, S. P., 1990, Mechanics of Materials, Chapman and Hall, Boston, Mass.
15.
Sterling Instruments, 1997, Handbook of Design Components, Autodesk Data Publishing, New York.
16.
Luenberger, D. G., 1984, Linear and Nonlinear Programming, Second Edition, Addision-Wesley Publishing Company, Reading, MA.
17.
Sunar
, M.
, and Belegundu
, A. D.
, 1991
, “Trust Region Methods for Structural Optimization Using Exact Second Order Sensitivity
,” Int. J. Numer. Methods Eng.
, 32
, pp. 275
–293
.18.
Arora, J. S., 1989, “IDESIGN User’s Manual Version 3.5.2,” Technical Report, Optimal Design Laboratory, College of Engineering, University of Iowa.
19.
Snyman
, J. A.
, and Stander
, N.
, 1996
, “Feasible Descent Cone Methods for Inequality Constrained Optimization Problems
,” Int. J. Numer. Methods Eng.
, 39
, pp. 275
–293
.20.
Golub, G. H., and Van Loan, C. F., 1983, Matrix Computations, The Johns Hopkins University Press, Baltimore.
Copyright © 2001
by ASME
You do not currently have access to this content.