The development of solid modeling to represent the geometry of designed parts and the development of parametric modeling to control the size and shape have had significant impacts on the efficiency and speed of the design process. Designers now rely on parametric solid modeling, but often are frustrated by a problem that unpredictably causes their sketches to become twisted, contorted, or take an unexpected shape. Mathematically, this problem, known as the “multiple solution problem” occurs because the dimensions and geometric constraints yield a set of non-linear equations with many roots. In practice, this situation occurs because the dimensioning and geometric constraint information given in a CAD model is not sufficient to unambiguously and flexibly specify which configuration the user desires. This paper first establishes that only explicit, independent solution selection declarations can provide a flexible mechanism that is sufficient for all situations. The paper then describes the systematic derivation of a set of “solution selector” types by considering the occurrences of multiple solutions in combinations of mutually constrained geometric entities. The result is a set of eleven basic solution selector types and two derived types that incorporate topological information. In particular, one derived type “concave/convex” is user-oriented and may prove to be particularly useful.
Skip Nav Destination
Article navigation
September 2003
Technical Papers
Solution Selectors: A User-Oriented Answer to the Multiple Solution Problem in Constraint Solving
Bernhard Bettig, Assistant Professor,,
Bernhard Bettig, Assistant Professor,
Mechanical Engineering-Eng. Mechanics Dept., Michigan Technological University, Houghton, MI
Search for other works by this author on:
Jami Shah, Professor,
Jami Shah, Professor,
Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ
Search for other works by this author on:
Bernhard Bettig, Assistant Professor,
Mechanical Engineering-Eng. Mechanics Dept., Michigan Technological University, Houghton, MI
Jami Shah, Professor,
Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ
Contributed by the Design Automation Committee for publication in the JOURNAL OF MECHANICAL DESIGN. Manuscript received June 2001; revised January 2003. Associate Editor: J. E. Renaud.
J. Mech. Des. Sep 2003, 125(3): 443-451 (9 pages)
Published Online: September 4, 2003
Article history
Received:
June 1, 2001
Revised:
January 1, 2003
Online:
September 4, 2003
Citation
Bettig, B., and Shah, J. (September 4, 2003). "Solution Selectors: A User-Oriented Answer to the Multiple Solution Problem in Constraint Solving ." ASME. J. Mech. Des. September 2003; 125(3): 443–451. https://doi.org/10.1115/1.1587749
Download citation file:
Get Email Alerts
Related Articles
Use of Topological Constraints in Construction and Processing of Robust Solid Models
J. Comput. Inf. Sci. Eng (December,2001)
Solid Model Databases: Techniques and Empirical Results
J. Comput. Inf. Sci. Eng (December,2001)
CADDAC: Multi-Client Collaborative Shape Design System with Server-based Geometry Kernel
J. Comput. Inf. Sci. Eng (June,2003)
An Approach to Modeling & Representation of Heterogeneous Objects
J. Mech. Des (December,1998)
Related Proceedings Papers
Related Chapters
Computer Aided Design of Tools, Dies, and Moulds (TDMs)
Computer Aided Design and Manufacturing
Three-Dimensional Solid Modeling of Large Wind Turbine Blade Based on Wilson Theory
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)
Response Surface Aberrations
Engineering Optimization: Applications, Methods, and Analysis