In this paper, Lagrangian formulation of a horizontal rotating beam with active constrained layer damping (ACLD) treatment is presented. The problem is approached by the Rayleigh-Ritz method. By assuming modal functions as the displacement shape functions and using effective damping model of the visco-elastic material (VEM) layer, the number of degrees of freedom of the system is greatly reduced. The damping of the visco-elastic material is characterized by a shear (storage) modulus and a loss factor. Also the dynamic behavior of the rotating ACLD beam is analyzed in the time domain. The effects of control gains, shear modulus and loss factor of the VEM on the dynamic response are also investigated.
Issue Section:
Technical Papers
1.
DiTaranto
, R. A.
, 1965
, “Theory of Vibratory Bending for Elastic and Viscoelastic Layered Finite-Length Beam
,” ASME J. Appl. Mech.
, 87
, pp. 881
–886
.2.
Bhimaraddi
, A.
, 1995
, “Sandwich Beam Theory and Analysis of Constrained Layer Damping
,” J. Sound Vib.
, 179
(4
), pp. 591
–602
.3.
Shen, I. Y., 1994, “Stability and Controllability of Euler-Bernoulli Beams With Intelligent Constrained Layer Treatments,” ASME Active Control Vib. Noise, Vol. 75, pp. 169–78.
4.
Baz
, A.
, 1997
, “Dynamic Boundary Control of Beams Using Active Constrained Layer Damping
,” Systems and Signal Processing
,11
(6
), pp. 811
–825
.5.
Tawfeic
, S. R.
, Baz
, A.
, Ismail
, A. A.
, Azim
, O. A.
, and Karar
, S. S.
, 1997, “Vibration Control of a Flexible Arm With Active Constrained Layer Damping,” Journal of Low Frequency Noise, Vibration and Active Control, 16(4), pp. 271–287.6.
Lesieutre
, G. A.
, and Lee
, U.
, 1996
, “A Finite Element for Beams Having Segmented Active Constrained Layers With Frequency-Dependent Viscoelastics
,” Smart Mater. Struct.
, 5
, pp. 615
–627
.7.
Piedboeuf, J. C., Page˙, L.-L., Tremblay, I., and Potvin, M.-J., 1999, “Efficient Simulation of a Multilayer Viscoelastic Beam Using an Equivalent Homogeneous Beam,” Proc. 1999 IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1188–1193.
8.
Lim
, Y.-H.
, Varadan
, V. V.
, and Varadan
, V. K.
, 2002
, “Closed Loop Finite-Element Modeling of Active Constrained Layer Damping in Time Domain Analysis
,” Smart Mater. Struct.
, 11
, pp. 89
–97
.9.
McTavish
, D. J.
, and Hughes
, P. C.
, 1993
, “Modeling of Linear Viscoelastic Space Structures
,” ASME J. Vibr. Acoust.
, 115
, pp. 103
–110
.10.
Lesieutre
, G. A.
, and Mingori
, D. L.
, 1990
, “Finite Element Modeling of Frequency Dependent Materials Damping Using Augmenting Thermodynamic Fields
,” AIAA J.
, 13
, pp. 1040
–1050
.11.
Trindade
, M. A.
, Benjeddou
, A.
, and Ohayon
, R.
, 2000
, “Modeling of Frequency-Dependent Viscoelastic Materials for Active-Passive Vibration Damping
,” ASME J. Vibr. Acoust.
, 122
, pp. 169
–174
.12.
Baz
, A.
, 2000
, “Spectral Finite-Element Modeling of the Longitudinal Wave Propagation in Rods Treated With Active Constrained Layer Damping
,” Smart Mater. Struct.
, 9
, pp. 372
–377
.13.
Lee
, U.
, and Kim
, J.
, 2001
, “Spectral Element Modeling for the Beams Treated With Active Constrained Layer Damping
,” Int. J. Solids Struct.
, 38
, pp. 5679
–5702
.14.
Wang
, G.
, and Wereley
, N. M.
, 2002
, “Spectral Finite-Element Analysis of Sandwich Beams With Passive Constrained Layer Damping
,” ASME J. Vibr. Acoust.
, 124
, pp. 376
–386
.15.
Lam
, M. J.
, Inman
, D. J.
, and Saunders
, W. R.
, 2002
, “Hybrid Damping Models Using the Golla-Hughes-McTavish Method With Internally Balanced Model Reduction and Output Feedback
,” Smart Mater. Struct.
, 9
, pp. 362
–371
.16.
Fasana
, A.
, and Marchesiello
, S.
, 2001
, “Rayleigh-Ritz Analysis of Sandwich Beams
,” J. Sound Vib.
, 241
(4
), pp. 643
–652
.17.
Sturla
, F. A.
, and Argento
, A.
, 1996
, “Free and Forced Vibrations of a Spinning Viscoelastic Beam
,” ASME J. Vibr. Acoust.
, 118
, pp. 463
–468
.18.
Baz
, A.
, and Ro
, J.
, 2001
, “Vibration Control of Rotating Beams With Active Constrained Layer Damping
,” Smart Mater. Struct.
, 10
, pp. 112
–120
.19.
Liu
, Q.
, Chattopadhyay
, A.
, Gu
, H.
, and Zhou
, X.
, 2000
, “Use of Segmented Constrained Layer Damping Treatment for Improved Helicopter Aeromechanical Stability
,” Smart Mater. Struct.
, 9
, pp. 523
–532
.20.
Silva, L. A., Austin, E. M., and Inman, D. J., 2002, “The Role of Internal Variables on the Control of Viscoelastic Structures,” Proc. 2002 ASME International Mechanical Engineering Congress and Exposition, IMECE 2002-33991.
21.
Baz
, A.
, and Ro
, J.
, 1995
, “Optimum Design and Control of Active Constrained Layer Damping,” (Special 50th Anniversary Design Issue
), ASME J. Mech. Des.
, 117
, pp. 135
–144
.Copyright © 2004
by ASME
You do not currently have access to this content.