In this paper, Lagrangian formulation of a horizontal rotating beam with active constrained layer damping (ACLD) treatment is presented. The problem is approached by the Rayleigh-Ritz method. By assuming modal functions as the displacement shape functions and using effective damping model of the visco-elastic material (VEM) layer, the number of degrees of freedom of the system is greatly reduced. The damping of the visco-elastic material is characterized by a shear (storage) modulus and a loss factor. Also the dynamic behavior of the rotating ACLD beam is analyzed in the time domain. The effects of control gains, shear modulus and loss factor of the VEM on the dynamic response are also investigated.

1.
DiTaranto
,
R. A.
,
1965
, “
Theory of Vibratory Bending for Elastic and Viscoelastic Layered Finite-Length Beam
,”
ASME J. Appl. Mech.
,
87
, pp.
881
886
.
2.
Bhimaraddi
,
A.
,
1995
, “
Sandwich Beam Theory and Analysis of Constrained Layer Damping
,”
J. Sound Vib.
,
179
(
4
), pp.
591
602
.
3.
Shen, I. Y., 1994, “Stability and Controllability of Euler-Bernoulli Beams With Intelligent Constrained Layer Treatments,” ASME Active Control Vib. Noise, Vol. 75, pp. 169–78.
4.
Baz
,
A.
,
1997
, “
Dynamic Boundary Control of Beams Using Active Constrained Layer Damping
,”
Systems and Signal Processing
,
11
(
6
), pp.
811
825
.
5.
Tawfeic
,
S. R.
,
Baz
,
A.
,
Ismail
,
A. A.
,
Azim
,
O. A.
, and
Karar
,
S. S.
, 1997, “Vibration Control of a Flexible Arm With Active Constrained Layer Damping,” Journal of Low Frequency Noise, Vibration and Active Control, 16(4), pp. 271–287.
6.
Lesieutre
,
G. A.
, and
Lee
,
U.
,
1996
, “
A Finite Element for Beams Having Segmented Active Constrained Layers With Frequency-Dependent Viscoelastics
,”
Smart Mater. Struct.
,
5
, pp.
615
627
.
7.
Piedboeuf, J. C., Page˙, L.-L., Tremblay, I., and Potvin, M.-J., 1999, “Efficient Simulation of a Multilayer Viscoelastic Beam Using an Equivalent Homogeneous Beam,” Proc. 1999 IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1188–1193.
8.
Lim
,
Y.-H.
,
Varadan
,
V. V.
, and
Varadan
,
V. K.
,
2002
, “
Closed Loop Finite-Element Modeling of Active Constrained Layer Damping in Time Domain Analysis
,”
Smart Mater. Struct.
,
11
, pp.
89
97
.
9.
McTavish
,
D. J.
, and
Hughes
,
P. C.
,
1993
, “
Modeling of Linear Viscoelastic Space Structures
,”
ASME J. Vibr. Acoust.
,
115
, pp.
103
110
.
10.
Lesieutre
,
G. A.
, and
Mingori
,
D. L.
,
1990
, “
Finite Element Modeling of Frequency Dependent Materials Damping Using Augmenting Thermodynamic Fields
,”
AIAA J.
,
13
, pp.
1040
1050
.
11.
Trindade
,
M. A.
,
Benjeddou
,
A.
, and
Ohayon
,
R.
,
2000
, “
Modeling of Frequency-Dependent Viscoelastic Materials for Active-Passive Vibration Damping
,”
ASME J. Vibr. Acoust.
,
122
, pp.
169
174
.
12.
Baz
,
A.
,
2000
, “
Spectral Finite-Element Modeling of the Longitudinal Wave Propagation in Rods Treated With Active Constrained Layer Damping
,”
Smart Mater. Struct.
,
9
, pp.
372
377
.
13.
Lee
,
U.
, and
Kim
,
J.
,
2001
, “
Spectral Element Modeling for the Beams Treated With Active Constrained Layer Damping
,”
Int. J. Solids Struct.
,
38
, pp.
5679
5702
.
14.
Wang
,
G.
, and
Wereley
,
N. M.
,
2002
, “
Spectral Finite-Element Analysis of Sandwich Beams With Passive Constrained Layer Damping
,”
ASME J. Vibr. Acoust.
,
124
, pp.
376
386
.
15.
Lam
,
M. J.
,
Inman
,
D. J.
, and
Saunders
,
W. R.
,
2002
, “
Hybrid Damping Models Using the Golla-Hughes-McTavish Method With Internally Balanced Model Reduction and Output Feedback
,”
Smart Mater. Struct.
,
9
, pp.
362
371
.
16.
Fasana
,
A.
, and
Marchesiello
,
S.
,
2001
, “
Rayleigh-Ritz Analysis of Sandwich Beams
,”
J. Sound Vib.
,
241
(
4
), pp.
643
652
.
17.
Sturla
,
F. A.
, and
Argento
,
A.
,
1996
, “
Free and Forced Vibrations of a Spinning Viscoelastic Beam
,”
ASME J. Vibr. Acoust.
,
118
, pp.
463
468
.
18.
Baz
,
A.
, and
Ro
,
J.
,
2001
, “
Vibration Control of Rotating Beams With Active Constrained Layer Damping
,”
Smart Mater. Struct.
,
10
, pp.
112
120
.
19.
Liu
,
Q.
,
Chattopadhyay
,
A.
,
Gu
,
H.
, and
Zhou
,
X.
,
2000
, “
Use of Segmented Constrained Layer Damping Treatment for Improved Helicopter Aeromechanical Stability
,”
Smart Mater. Struct.
,
9
, pp.
523
532
.
20.
Silva, L. A., Austin, E. M., and Inman, D. J., 2002, “The Role of Internal Variables on the Control of Viscoelastic Structures,” Proc. 2002 ASME International Mechanical Engineering Congress and Exposition, IMECE 2002-33991.
21.
Baz
,
A.
, and
Ro
,
J.
,
1995
, “
Optimum Design and Control of Active Constrained Layer Damping,” (Special 50th Anniversary Design Issue
),
ASME J. Mech. Des.
,
117
, pp.
135
144
.
You do not currently have access to this content.