The objective of this investigation is to develop a nonlinear finite element formulation for the elastic-plastic analysis of flexible multibody systems. The Lagrangian plasticity theory based on J2 flow theory is used to account for the effect of plasticity in flexible multibody dynamics. It is demonstrated that the principle of objectivity that is an issue when existing finite element formulations using rate-type constitutive equations are used is automatically satisfied when the stress and strain rate are directly calculated in the Lagrangian descriptions using the absolute nodal coordinate formulation employed in this investigation. This is attributed to the fact that, in the finite element absolute nodal coordinate formulation, the position vector gradients can completely define the state of rotation and deformation within the element. As a consequence, the numerical algorithm used to determine the plastic deformations such as the radial return algorithm becomes much simpler when the absolute nodal coordinate formulation is used as compared to existing finite element formulations that employ incrementally objective algorithms. Several numerical examples are presented in order to demonstrate the use of the formulations presented in the paper.

1.
Shabana, A. A., 1998, Dynamics of Multibody Systems, 2nd, Cambridge University Press.
2.
Ambro´sio
,
J. A. C.
, and
Nikravesh
,
P. E.
,
1992
, “
Elasto-Plastic Deformations in Multibody Dynamics
,”
Nonlinear Dyn.
,
3
, pp.
85
104
.
3.
Gerstmayr, J., and Irschik, H., 2002, “Computational Methods for Elasto-Plastic Multibody Dynamic Systems,” Proceedings of Fifth World Congress on Computational Mechanics, Vienna, Austria.
4.
Gerstmayr
,
J.
,
Holl
,
H. J.
, and
Irschik
,
H.
,
2001
, “
Development of Plasticity and Damage in Vibrating Structural Elements Performing Guided Rigid-Body Motions
,”
Arch. Appl. Mech.
,
71
, pp.
135
145
.
5.
Hill, R., 1950, The Mathematical Theory of Plasticity, Clarendon Press.
6.
Naghdi
,
P. M.
,
1990
, “
A Critical Review of the State of Finite Plasticity
,”
Journal of Applied Mathematics and Physics (ZAMP)
,
41
, pp.
315
394
.
7.
Lee
,
E. H.
, and
Liu
,
D. T.
,
1967
, “
Finite Strain Elastic-Plastic Theory Particularly for Plane Wave Analysis
,”
J. Appl. Phys.
,
38
, pp.
19
27
.
8.
Lee
,
E. H.
,
1969
, “
Elastic-Plastic Deformation at Finite Strains
,”
ASME J. Appl. Mech.
,
36
, pp.
1
6
.
9.
Johnson
,
G. C.
, and
Bammann
,
D. J.
,
1984
, “
Discussion of Stress Rates in Finite Deformation Problems
,”
Int. J. Solids Struct.
,
20
, pp.
725
737
.
10.
Khan, A. S., and Huang, S., 1995, Continuum Theory of Plasticity, Wiley.
11.
Nagtegaal, J. C., and De Jong, J. E., 1982, “Some Aspects of Non-Isotropic Work Hardening in Finite Strain Plasticity,” Plasticity of Metal at Finite Strain, Stanford University Press, pp. 65–102.
12.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1965
, “
A General Theory of Elasto-Plastic Continuum
,”
Arch. Ration. Mech. Anal.
,
18
, pp.
221
281
.
13.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1971
, “
Some Remarks on Elastic-Plastic Deformation at Finite Strain
,”
Int. J. Eng. Sci.
,
9
, pp.
1219
1229
.
14.
Lee
,
E. H.
,
1981
, “
Some Comments on Elastic-Plastic Analysis
,”
Int. J. Solids Struct.
,
17
, pp.
859
872
.
15.
Nemat-Nasser
,
S.
,
1982
, “
On Finite Deformation Elasto-Plasticity
,”
Int. J. Solids Struct.
,
18
, pp.
857
872
.
16.
Nagtegaal
,
J. C.
,
1982
, “
On the Implementation of Inelastic Constitutive Equations with Special Reference to Large Deformation Problems
,”
Comput. Methods Appl. Mech. Eng.
,
33
, pp.
469
484
.
17.
Simo
,
J. C.
,
1988
, “
A Framework for Finite Strain Elastoplasticity Based on Maximum Plastic Dissipation and the Multiplicative Decomposition: Part I Continuum Formulation
,”
Comput. Methods Appl. Mech. Eng.
,
66
, pp.
199
219
.
18.
Simo, J. C., and Hughes, T. J. R., 1998, Computational Inelasticity, Springer.
19.
Simo
,
J. C.
,
1992
, “
Algorithms for Static and Dynamic Multiplicative Plasticity That Preserve the Classical Return Mapping Schemes of the Infinitesimal Theory
,”
Comput. Methods Appl. Mech. Eng.
,
99
, pp.
61
112
.
20.
Crisfield, M. A., 1996, Non-Linear Finite Element Analysis of Solids and Structures, Volume 2, Wiley.
21.
Eterovic
,
A. L.
, and
Bathe
,
K. J.
,
1990
, “
A Hyperelastic-Based Large Strain Elastoplastic Constitutive Formulation with Combined Isotropic-Kinematic Hardening Using the Logarithmic Stress and Strain Measures
,”
Int. J. Numer. Methods Eng.
,
30
, pp.
1099
1114
.
22.
Weber
,
G.
, and
Anand
,
L.
,
1990
, “
Finite Deformation Constitutive-Equations and a Time Integration Procedure for Isotropic, Hyperelastic Viscoplastic Solids
,”
Comput. Methods Appl. Mech. Eng.
,
79
, pp.
173
202
.
23.
Papadopoulos
,
P.
, and
Lu
,
J.
,
1998
, “
A General Framework for the Numerical Solution of Problems in Finite Elasto-Plasticity
,”
Comput. Methods Appl. Mech. Eng.
,
159
, pp.
1
18
.
24.
Meng
,
X. N.
, and
Laursen
,
T. A.
,
2002
, “
Energy Consistent Algorithms for Dynamic Finite Deformation Plasticity
,”
Comput. Methods Appl. Mech. Eng.
,
191
, pp.
1639
1675
.
25.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements
,”
ASME J. Mech. Des.
,
123
, pp.
606
621
.
26.
Mikkola
,
A. M.
, and
Shabana
,
A. A.
,
2003
, “
A Non-Incremental Finite Element Procedure for the Analysis of Large Deformation of Plates and Shells in Mechanical System Applications
,”
Multibody System Dynamics
,
9
, pp.
283
309
.
27.
Shabana
,
A. A.
, and
Mikkola
,
A. M.
,
2003
, “
Use of the Finite Element Absolute Nodal Coordinate Formulation in Modeling Slope Discontinuity
,”
ASME J. Mech. Des.
,
125
, pp.
342
350
.
28.
Sugiyama
,
H.
,
Escalona
,
J. L.
, and
Shabana
,
A. A.
,
2003
, “
Formulation of Three-Dimensional Joint Constraints Using the Absolute Nodal Coordinates
,”
Nonlinear Dyn.
,
31
, pp.
167
195
.
29.
Bonet, J., and Wood, R. D., 1997, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge University Press.
30.
Wilkins, M. L., 1964, “Calculation of Elasto-Plastic Flow,” Methods of Computational Physics 3, Academic Press.
31.
Krieg, R. D., and Key, S. W., 1976, “Implementation of a Time Dependent Plasticity Theory into Structural Computer Programs,” Constitutive Equations in Viscoplasticity: Computational and Engineering Aspects, AMD-20, ASME.
32.
Simo
,
J. C.
,
Taylor
,
R. L.
, and
Pister
,
K. S.
,
1985
, “
Variational and Projection Methods for the Volume Constraint in Finite Deformation Elasto-Plasticity
,”
Comput. Methods Appl. Mech. Eng.
,
51
, pp.
177
208
.
33.
Yakoub
,
R. Y.
, and
Shabana
,
A. A.
,
1999
, “
Use of Cholesky Coordinates and the Absolute Nodal Coordinate Formulation in the Computer Simulation of Flexible Multibody Systems
,”
Nonlinear Dyn.
,
20
, pp.
267
282
.
34.
Simo
,
J. C.
, and
Taylor
,
R. L.
,
1985
, “
Consistent Tangent Operators for Rate-Independent Elastoplasticity
,”
Comput. Methods Appl. Mech. Eng.
,
48
, pp.
101
118
.
35.
ANSYS Theory Reference 6.1, 2002, SAS IP, Inc.
36.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
Three-Dimensional Finite-Strain Rod Model. Part II: Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
58
, pp.
79
116
.
37.
Campanelli
,
M.
,
Berzeri
,
M.
, and
Shabana
,
A. A.
,
2000
, “
Performance of the Incremental and Non-Incremental Finite Element Formulations in Flexible Multibody Problems
,”
ASME J. Mech. Des.
,
122
, pp.
498
507
.
You do not currently have access to this content.