A data-clustering method can be a useful tool for engineering design that is based on numerical optimization. The clustering method is an effective way of producing representative designs, or clusters, from a large set of potential designs. The results presented here focus on the application of clustering to single-objective optimization results. In the case of single-objective optimization, the method is used to determine the clusters in a set of quasi-optimal feasible solutions generated by an optimizer. A data-clustering procedure based on an evolutionary method is briefly described. The number of clusters is determined automatically and need not be known a priori. The method is demonstrated by application to the results of a turbine blade coolant passage shape-optimization problem. The solutions are transformed to a lower-dimensional space for better understanding of their variance and character. Engineering information, such as the shapes and locations of the internal passages, is supported by the visualization of clustered solutions. The clustering, transformation, and visualization methods presented in this study might be applicable to the increasing interpretation demands of design optimization.

1.
Yoshimura
,
M.
, and
Izui
,
K.
,
2004
, “
Hierarchical Parallel Processes of Genetic Algorithms for Design Optimization of Large-scale Products
,”
J. Mech. Des.
,
126
(
2
), pp.
217
224
.
2.
Grignon
,
P. M.
, and
Fadel
,
G. M.
,
2004
, “
A GA Based Configuration Design Optimization Method
,”
J. Mech. Des.
,
126
(
1
), pp.
6
15
.
3.
Deb
,
K.
, and
Jain
,
S.
,
2003
, “
Multi-Speed Gearbox Design Using Multi-Objective Evolutionary Algorithms
,”
J. Mech. Des.
,
125
(
3
), pp.
609
619
.
4.
Tappeta
,
R. V.
, and
Renaud
,
J. E.
,
2001
, “
Interactive Multiobjective Optimization Design Strategy for Decision Based Design
,”
J. Mech. Des.
,
123
(
2
), pp.
205
215
.
5.
Meng
,
Z.
, and
Pao
,
Y. H.
,
2000
, “
Visualization and Self-Organization of Multidimensional Data Through Equalized Orthogonal Mapping
,”
IEEE Trans. Neural Netw.
,
11
(
4
), pp.
1031
1038
.
6.
Jain, A. K., and Dubes, R. C., 1989, Algorithms for Clustering Data, Prentice-Hall, Englewood Cliffs, NJ.
7.
Mirkin, B., 1996, Mathematical Classiffication and Clustering, Kluwer, Dordrecht.
8.
Kohonen
,
T.
,
1988
, “
The Neural Phonetic Typewriter
,”
IEEE Trans. Comput.
,
21
(
3
), pp.
11
12
.
9.
Kohonen, T., 1989, Self-Organization and Associative Memory, Springer-Verlag, Berlin.
10.
Fukunaga
,
K.
, and
Koonts
,
W. L. G.
,
1970
, “
Application of the Karhunen-Loe`ve Expansion to Feature Selection and Ordering
,”
IEEE Trans. Comput.
,
19
(
C
), pp.
311
318
.
11.
Oja
,
E.
,
1982
, “
A Simplified Neuron Model as a Principal Component Analyzer
,”
J. Math. Biol.
,
15
(
3
), pp.
267
273
.
12.
Sanger
,
T. D.
,
1989
, “
Optimal Unsupervised Learning in a Single-layer Feedforward Neural Network
,”
Neural Networks
,
2
(
6
), pp.
459
465
.
13.
Kramer
,
M. A.
,
1991
, “
Nonlinear Principal Component Analysis Using Autoassociative Feedforward Neural Networks
,”
AIChE J.
,
37
(
2
), pp.
233
243
.
14.
Pao
,
Y. H.
,
1996
, “
Dimension Reduction, Feature Extraction and Interpretation of Data with Network Computing
,”
Int. J. Pattern Recognit. Artif. Intell.
,
1
(
5
), pp.
521
535
.
15.
Sammon
,
J. W.
,
1969
, “
A Nonlinear Mapping for Data Structure Analysis
,”
IEEE Trans. Comput.
,
18
(
5
), pp.
401
409
.
16.
Mao
,
J.
, and
Jain
,
A. K.
,
1995
, “
Artifficial Neural Networks for Feature Extraction and Multivariate Data Projection
,”
IEEE Trans. Neural Netw.
,
6
(
1
), pp.
296
317
.
17.
Nomoto
,
H.
,
Koga
,
A.
,
Ito
,
S.
,
Fukuyama
,
Y.
,
Otomo
,
F.
,
Shibuya
,
S.
,
Sato
,
M.
,
Kobayashi
,
Y.
, and
Matsuzaki
,
H.
,
1997
, “
The Advanced Cooling Technology for the 1500C Class Gas Turbine: Steam-Cooled Vanes and Aircooled Blades
,”
ASME J. Eng. Gas Turbines Power
,
119
(
3
), pp.
624
632
.
18.
Dennis
,
B. H.
,
Egorov
,
I. N.
,
Han
,
Z.-X.
,
Dulikravich
,
G. S.
, and
Poloni
,
C.
,
2001
, “
Multi-Objective Optimization of Turbomachinery Cascades for Minimum Loss, Maximum Loading, and Maximum Gap-to-Chord Ratio
,”
Int. J. Turbo Jet-Engines
,
18
(
3
), pp.
201
210
.
19.
Shewchuk, J. R., 1996, “Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator,” Proc. of the 1st Workshop on Applied Computational Geometry, Philadelphia, Springer-Verlag, Berlin, pp. 124–133.
20.
Dennis, B. H., Egorov, I. N., Dulikravich, G. S., and Yoshimura, S., 2003, “Optimization of a Large Number of Coolant Passages Located Close to the Surface of a Turbine Blade,” Proc. of Turbo Expo 2003, Atlanta, ASME, New York, ASME Paper No. GT2003-38051.
21.
Egorov, I. N., 1998, “Indirect Optimization Method on the Basis of Self-Organization,” Curtin University of Technology, Perth, Australia, Optimization Techniques and Applications (ICOTA’98), Springer-Verlag, Berlin, Vol. 2, pp. 683–691.
22.
Dennis
,
B. H.
,
Han
,
Z.-X.
, and
Dulikravich
,
G. S.
,
2001
, “
Optimization of Turbomachinery Airfoils With a Genetic/Sequential Quadratic Programming Algorithm
,”
J. Propul. Power
,
17
(
5
), pp.
112
1128
.
23.
Ho¨ppner, F., Klawonn, F., Kruse, R., and Runkler, T., 1999, Fuzzy Cluster Analysis, Wiley, West Sussex, England.
24.
Baraldi
,
A.
, and
Blonda
,
P.
,
1999
, “
A Survey of Fuzzy Clustering Algorithms for Pattern Recognition, Part I
,”
IEEE Trans. Syst. Man Cybern.
,
29
(
6
), pp.
778
786
.
25.
Pedrycz
,
W.
, and
Walwtzky
,
J.
,
1997
, “
Fuzzy Clustering With Partial Supervision
,”
IEEE Trans. Syst. Man Cybern.
,
27
(
5
), pp.
787
795
.
26.
Chinrungrueng
,
C.
, and
Sequin
,
C. H.
,
1995
, “
Optimal Adaptive K-Means Algorithm With Dynamic Adjustment of Learning Rate
,”
Immunobiology
,
6
(
1
), pp.
157
169
.
27.
Krishna
,
K.
, and
Murty
,
M. N.
,
1999
, “
Genetic K-Means Algorithm
,”
IEEE Trans. Syst. Man Cybern.
,
29
(
3
), pp.
433
439
.
28.
Cowgill
,
M. C.
, and
Harvey
,
R. J.
,
1999
, “
A Genetic Algorithm Approach to Cluster Analysis
,”
Int. J. Comput. Math. Appl.
,
37
(
7
), pp.
99
108
.
29.
Nascimento, S., and Moura-Pires, F., 1997, “A Genetic Approach to Fuzzy Clustering With a Validity Measure Fitness Function,” Advances in Intelligent Data Analysis, IDA-97, LNCS 1280, Springer-Verlag, Berlin, pp. 325–335.
30.
Turhan, M., 1997, “Genetic Fuzzy Clustering by Means of Discovering Membership Functions,” Advances in Intelligent Data Analysis, IDA-97, LNCS 1280, Springer-Verlag, Berlin, pp. 383–393.
31.
Babu
,
G. P.
, and
Murty
,
M. N.
,
1994
, “
Clustering With Evolution Strategies
,”
Pattern Recogn.
,
27
(
14
), pp.
321
329
.
32.
Ba¨ck, T., 1996, Evolution Algorithms in Theory and Practice, Oxford University Press, New York.
33.
Goldberg, D. E., 1989, Genetic Algorithms in Search Optimization and Machine Learning, Addison-Wesley, Reading, MA.
34.
Jeong, M. J., and Yoshimura, S., 2002, “An Evolutionary Clustering Approach to Pareto Solutions in Multiobjective Optimization,” Proc. of 28th Design Automation Conference: ASME Design Engineering Technical Conferences, Montreal, ASME, New York, ASME Paper No. DETC2002/DAC-34048.
35.
Jeong, M. J., 2003, Integrated Support System for Decision-Making in Design Optimization, Ph.D. thesis, Institute of Environmental Studies, University of Tokyo.
36.
Davies
,
D. L.
, and
Bouldin
,
D. W.
,
1979
, “
A Cluster Separation Measure
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
1
(
4
), pp.
224
227
.
37.
Chen
,
J. X.
, and
Wang
,
S.
,
2001
, “
Data Visualization: Parallel Coordinates and Dimension Reduction
,”
Comput. Sci. Eng.
,
6
(
5
), pp.
110
113
.
38.
Inselberg
,
A.
,
2002
, “
Visualization and Data Mining of High-Dimensional Data
,”
Chemom. Intell. Lab. Syst.
,
60
(1–2), pp.
147
159
.
You do not currently have access to this content.