This paper investigates the location of a rigid body such that N specified points of the body lie on N given planes in space. Variants of this problem arise in kinematics, metrology, and computer vision, including some, such as the motion of a spherical four-bar, that are not at first glance point-plane contact problems. The case N=6, the minimum number to fully constrain the body, is of special interest: We give an eigenvalue method for finding all solutions, which may number up to eight. For N7 there are, in general, no solutions, but if the constraints are compatible and not degenerate, we show how to find the unique solution by a linear least-squares method. For N5, the body is underconstrained, having in general 6N degrees of freedom; we determine the degree of the general motion for each case. We also examine the workspace of a particular three-degree-of-freedom parallel-link tripod mechanism.

1.
Wampler
,
C. W.
, 2004, “
Locating N Points of a Rigid Body on N Given Planes
,”
Proc. ASME Design Engineering Technical Conf. (CDROM)
, Salt Lake City.
2.
Lazard
,
D.
, 1993, “
On the Representation of Rigid-Body Motions and its Application to Generalized Platform Manipulators
,” in
Computational Kinematics
,
J.
Angeles
,
P.
Kovacs
, and
G.
Hommel
(eds.) pp.
175
182
,
Kluwer
, Dordrecht.
3.
Ronga
,
F.
, and
Vust
,
T.
, 1992, “
Stewart Platforms Without Computer?
Proc. Conf. Real Analytic and Algebraic Geometry
, pp.
197
212
, Trento.
4.
Mourrain
,
B.
, 1993, “
The 40 Generic Positions of a Parallel Robot
,”
Proc. ISSAC
,
M.
Bronstein
, ed., pp.
173
182
.
5.
Raghavan
,
M.
, 1993, “
The Stewart Platform of General Geometry has 40 Configurations
,”
ASME J. Mech. Des.
1050-0472,
115
, pp.
277
282
.
6.
Husty
,
M. L.
, 1996, “
An Algorithm for Solving the Direct Kinematics of General Stewart-Gough Platforms
,”
Mech. Mach. Theory
0094-114X,
31
,
4
, pp.
365
380
.
7.
Wampler
,
C. W.
, 1996, “
Forward Displacement Analysis of General Six-in-Parallel SPS (Stewart) Platform Manipulators Using Soma Coordinates
,”
Mech. Mach. Theory
0094-114X,
31
,
3
, pp.
331
337
.
8.
Gao
,
X. S.
,
Lei
,
D.
,
Liao
,
Q.
, and
Zhang
,
G.-F.
, 2005, “
Generalized Stewart-Gough Platforms and Their Direct Kinematics
,”
IEEE Trans. Rob. Autom.
1042-296X,
21
,
2
, pp.
141
151
.
9.
Verner
,
M.
,
Xi
,
F.
, and
Mechefske
,
C.
, 2005, “
Optimal Calibration of Parallel Kinematic Machines
,”
ASME J. Mech. Des.
1050-0472,
127
,
1
, pp.
62
69
.
10.
Huynh
,
P.
, and
Hervé
,
J. M.
, 2005, “
Equivalent Kinematic Chains of Three Degree-of-Freedom Tripod Mechanisms With Planar Spherical Bonds
,”
ASME J. Mech. Des.
1050-0472,
127
,
1
, pp.
95
102
.
11.
Xi
,
F.
,
Angelico
,
O.
, and
Sinatra
,
R.
, 2005, “
Tripod Dynamics and its Inertial Effect
,”
ASME J. Mech. Des.
1050-0472,
127
,
1
, pp.
144
149
.
12.
Wampler
,
C. W.
, 2004, “
Displacement Analysis of Spherical Mechanisms Having Three or Fewer Loops
,”
ASME J. Mech. Des.
1050-0472,
126
,
1
, pp.
93
100
.
13.
Chirikjian
,
G. S.
, and
Kyatkin
,
A. B.
, 2001,
Engineering Applications of Noncommutative Harmonic Analysis
,
CRC Press
, New York.
14.
Sommese
,
A. J.
, and
Wampler
,
C. W.
, 1996, “
Numerical Algebraic Geometry
,”
Lectures in Applied Mathematics: The Mathematics of Numerical Analysis
, Vol.
32
,
American Mathematical Society
, Province, R.I., pp.
749
763
.
15.
Sommese
,
A. J.
,
Verschelde
,
J.
, and
Wampler
,
C. W.
, 2004, “
Advances in Polynomial Continuation for Solving Problems in Kinematics
,”
ASME J. Mech. Des.
1050-0472,
126
,
2
, pp.
262
268
.
16.
Sommese
,
A. J.
, and
Wampler
,
C. W.
, 2005,
Numerical Solution of Polynomial Systems Arising in Engineering and Science
,
World Scientific
, Singapore.
17.
Sommese
,
A. J.
,
Verschelde
,
J.
, and
Wampler
,
C. W.
, 2001, “
Using Monodromy to Decompose Solution Sets of Polynomial Systems Into Irreducible Components
,” in
Application of Algebraic Geometry to Coding Theory, Physics, and Computation
,
C.
Ciliberto
et al.
, ed., pp.
297
315
,
Kluwer Academic
, Dordrecht.
18.
Sommese
,
A. J.
,
Verschelde
,
J.
, and
Wampler
,
C. W.
, 2002, “
Symmetric Functions Applied to Decomposing Solution Sets of Polynomial Systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
40
,
6
, pp.
2026
2046
.
19.
Sasaki
,
T.
, 2001, “
Approximate Multivariate Polynomial Factorization Based on Zero-Sum Relations
,”
Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation (ISSAC 2001)
,
B.
Mourrain
, ed., pp.
284
291
, ACM.
20.
Rupprecht
,
D.
, 2004, “
Semi-Numerical Absolute Factorization of Polynomials With Integer Coefficients
,”
J. Symb. Comput.
0747-7171,
37
,
5
, pp.
557
574
.
21.
Dixon
,
A. L.
, 1909, “
The Eliminant of Three Quantics in Two Independent Variables
,”
Proc. London Math. Soc.
,
2
,
7
, pp.
49
69
.
22.
Cox
,
D.
,
Little
,
J.
, and
O’Shea
,
D.
, 1992,
Ideals, Varieties, and Algorithms
,
Springer-Verlag
, Berlin.
23.
Möller
,
H. M.
, and
Stetter
,
H. J.
, 1995, “
Multivariate Polynomial Equations With Multiple Zeros Solved by Matrix Eigenproblems
,”
Numer. Math.
0029-599X,
70
, pp.
311
329
.
24.
Stetter
,
H. J.
, 2004,
Numerical polynomial algebra
,
Society for Industrial and Applied Mathematics (SIAM)
, Philadelphia, PA.
25.
Goedecher
,
S.
, 1994, “
Remark on Algorithms to Find Roots of Polynomials
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
15
,
5
, pp.
1059
1063
.
26.
Wampler
,
C.
, 2004, “
Displacement Analysis of Spherical Mechanisms Having Three or Fewer Loops
,”
ASME J. Mech. Des.
1050-0472,
126
,
1
, pp.
93
100
.
27.
Su
,
H.-J.
,
Wampler
,
C.
, and
McCarthy
,
J. M.
, 2004, “
Geometric Design of Cylindric PRS Serial Chains
,”
ASME J. Mech. Des.
1050-0472,
126
,
2
, pp.
269
277
.
28.
Morgan
,
A. P.
, 1986, “
A Transformation to Avoid Solutions at Infinity for Polynomial Systems
,”
Appl. Math. Comput.
0096-3003,
18
, pp.
77
86
.
You do not currently have access to this content.