Abstract

Mathematical optimization plays an important role in engineering design, leading to greatly improved performance. Deterministic optimization, however, may result in undesired choices because it neglects uncertainty. Reliability-based design optimization (RBDO) and robust design can improve optimization by considering uncertainty. This paper proposes an efficient design optimization method under uncertainty, which simultaneously considers reliability and robustness. A mean performance is traded-off against robustness for a given reliability level of all performance targets. This results in a probabilistic multiobjective optimization problem. Variation is expressed in terms of a percentile difference, which is efficiently computed using the advanced mean value method. A preference aggregation method converts the multiobjective problem to a single-objective problem, which is then solved using an RBDO approach. Indifference points are used to select the best solution without calculating the entire Pareto frontier. Examples illustrate the concepts and demonstrate their applicability.

1.
Reddy
,
M. V.
,
Granhdi
,
R. V.
, and
Hopkins
,
D. A.
, 1994, “
Reliability Based Structural Optimization: A Simplified Safety Index Approach
,”
Comput. Struct.
0045-7949,
53
(
6
), pp.
1407
1418
.
2.
Lee
,
J. O.
,
Yang
,
Y. O.
, and
Ruy
,
W. S.
, 2002, “
A Comparative Study on Reliability Index and Target Performance Based Probabilistic Structural Design Optimization
,”
Comput. Struct.
0045-7949,
80
, pp.
257
269
.
3.
Wu
,
Y.-T.
, 1994, “
Computational Methods for Efficient Structural Reliability and Reliability Sensitivity Analysis
,”
AIAA J.
0001-1452,
32
(
8
), pp.
1717
1723
.
4.
Zou
,
T.
,
Mourelatos
,
Z. P.
,
Mahadevan
,
S.
, and
Tu
,
J.
, 2003, “
Component and System Reliability Analysis Using an Indicator Response Surface Monte Carlo Approach
,”
Proceedings of ASME Design Engineering Technical Conferences
, DETC2003/DAC-48708.
5.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 1999, “
A New Study on Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
121
(
4
), pp.
557
564
.
6.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 2003, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
125
(
2
), pp.
221
232
.
7.
Qu
,
X.
, and
Haftka
,
R. T.
, 2004, “
Reliability-Based Design Optimization Using Probabilistic Sufficiency Factor
,”
Struct. Multidiscip. Optim.
1615-147X,
27
(
5
), pp.
314
325
.
8.
Qu
,
X.
,
Singer
,
T.
, and
Haftka
,
R. T.
, “
Reliability-Based Global Optimization of Stiffened Panels Using Probabilistic Sufficiency Factor
,” 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Palm Springs, CA, Paper No. AIAA-2004-1898, 2004.
9.
Phadke
,
M. S.
, 1989,
Quality Engineering Using Robust Design
,
Prentice Hall
, Englewood Cliffs, NJ.
10.
Taguchi
,
G.
,
Elsayed
,
E.
, and
Hsiang
,
T.
, 1989,
Quality Engineering in Production Systems
,
McGraw-Hill
, New York.
11.
Chandra
,
M. J.
, 2001,
Statistical Quality Control
,
CRC Press
, Boca Raton, FL.
12.
Parkinson
,
D. B.
, 1997, “
Robust Design by variability Optimization
,”
Qual. Reliab. Eng. Int
0748-8017,
13
, pp.
97
102
.
13.
Bennett
,
G.
, and
Gupta
,
L. C.
, 1969, “
Least Cost Tolerance
,”
Int. J. Prod. Res.
0020-7543,
8
(
1
), pp.
65
74
.
14.
Forouraghi
,
B.
, 2000, “
Worst-Case Tolerance Design and Quality Assurance via Genetic Algorithms
,”
J. Optim. Theory Appl.
0022-3239,
113
(
2
), pp.
251
268
.
15.
Du
,
X.
, and
Chen
,
W.
, 2000, “
Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design
,”
ASME J. Mech. Des.
1050-0472,
122
, pp.
385
394
.
16.
Chen
,
W.
,
Wiecek
,
M. M.
, and
Zhang
,
J.
, 1999, “
Quality Utility – A Compromise Programming Approach to Robust Design
,”
ASME J. Mech. Des.
1050-0472,
121
(
2
), pp.
179
187
.
17.
Youn
,
B. D.
, and
Choi
,
K. K.
, 2004, “
Performance Moment Integration Approach for Reliability-Based Robust Design Optimization
,”
Proceedings of ASME Design Engineering Technical Conferences (DETC)
, Paper No. DETC2004/DAC-57471.
18.
Ramakrishnan
,
B.
, and
Rao
,
S. S.
, 1991, “
A Robust Optimization Approach using Taguchi’s Loss Function for Solving Nonlinear Optimization Problems
,” Advances in Design Automation, ASME DE-32-1, pp.
241
248
.
19.
Stoebner
,
A. M.
, and
Mahadevan
,
S.
, 2000, “
Robustness in Reliability-Based Design
,”
Proceedings of the 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Atlanta
, GA.
20.
Du
,
X.
,
Sudjianto
,
A.
, and
Chen
,
W.
, 2004, “
An Integrated Framework for Optimization under Uncertainty using Inverse Reliability Strategy
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
562
570
.
21.
Das
,
I.
, and
Dennis
,
J.
, 1997, “
A Closer Look at Drawbacks of Minimizing Sums of Objectives for Pareto Set Generation in Multicriteria Optimization Problems
,”
Struct. Optim.
0934-4373,
14
(
1
), pp.
63
69
.
22.
Bras
,
B. A.
, and
Mistree
,
F.
, 1995, “
A Compromise Decision Support Problem for Robust and Axiomatic Design
,”
ASME J. Mech. Des.
1050-0472,
117
(
1
), pp.
10
19
.
23.
Chen
,
W.
,
Allen
,
J. K.
,
Mistree
,
F.
, and
Tsui
,
K.-L.
, 1996, “
A Procedure for Robust Design; Minimizing Variations Caused by Noise factors and Control Factors
,”
ASME J. Mech. Des.
1050-0472,
118
(
4
), pp.
478
485
.
24.
Dai
,
Z.
,
Scott
,
M. J.
, and
Mourelatos
,
Z. P.
, 2003, “
Robust Design using Preference Aggregation Methods
,”
Proceedings of ASME Design Engineering Technical Conferences (DETC)
, Paper No. DETC2003/DAC-48715.
25.
Markowitz
,
H. M.
, 1952, “
Portfolio Selection
,”
J. Financ.
0022-1082,
7
(
1
), pp.
77
91
.
26.
Grossman
,
S. J.
, and
Zhou
,
Z.
, 1993, “
Optimal Investment Strategies for Controlling Drawdowns
,”
Math. Finance
0960-1627,
3
(
3
), pp.
241
276
.
27.
Rockafellar
,
R. T.
, and
Uryasev
,
S. P.
, 2000, “
Optimization of Conditional Value-at-Risk
,”
J. Risk
,
2
, pp.
21
42
.
28.
Andersson
,
F.
,
Mausser
,
H.
,
Rosen
,
D.
, and
Uryasev
,
S. P.
, 2001, “
Credit Risk Optimization with Conditional Value-at-Risk Criterion
,”
Math. Program.
0025-5610 Series B,
89
, pp.
273
291
.
29.
Parkinson
,
A.
,
Sorensen
,
C.
, and
Pourhassan
,
N.
, 1993, “
A General Approach for Robust Optimal Design
,”
ASME J. Mech. Des.
1050-0472,
115
(
1
), pp.
74
80
.
30.
Kokkolaras
,
M.
,
Mourelatos
,
Z. P.
, and
Papalambros
,
P.
, 2006, “
Design Optimization of Hierarchically Decomposed Multilevel Systems under Uncertainty
,”
ASME J. Mech. Des.
1050-0472,
128
(
2
), pp.
503
508
.
31.
Otto
,
K. N.
, and
Antonsson
,
E. K.
, 1991, “
Trade-Off Strategies in Engineering Design
,”
Res. Eng. Des.
0934-9839,
3
(
2
), pp.
87
104
.
32.
Scott
,
M. J.
, and
Antonsson
,
E. K.
, 1998, “
Aggregation Functions for Engineering Design Trade-Offs
,”
Fuzzy Sets Syst.
0165-0114,
99
(
3
), pp.
253
264
.
33.
Scott
,
M. J.
, and
Antonsson
,
E. K.
, 2000, “
Using Indifference Points in Engineering Decisions
,”
Proceedings of ASME Design Engineering Technical Conferences
, Paper No. DETC2000/ DTM-14559.
34.
Wu
,
Y.-T.
,
Millwater
,
H. R.
, and
Cruse
,
T. A.
, 1990, “
Advanced Probabilistic Structural Analysis Method of Implicit Performance Functions
,” AIAA J.,
28
(
9
), pp.
1663
1669
.
35.
Liang
,
J.
,
Mourelatos
,
Z. P.
, and
Tu
,
J.
, 2004, “
A Single-Loop Method for Reliability-Based Design Optimization
,”
Proceedings of ASME Design Engineering Technical Conferences
, Paper No. DETC2004/ DAC-57255.
36.
Kiureghian
,
A. D.
,
Zhang
,
Y.
, and
Li
,
C. C.
, 1994, “
Inverse Reliability Problem
,”
J. Eng. Mech.
0733-9399,
120
(
5
), pp.
1154
1159
.
37.
Ramu
,
P.
,
Qu
,
X.
,
Youn
,
B. D.
,
Haftka
,
R. T.
, and
Choi
,
K. K.
, 2004, “
Safety Factor and Inverse Reliability Measures
,” 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Palm Springs, CA, Paper No. AIAA-2004-1670.
38.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
1050-0472,
126
(
2
), pp.
225
233
.
39.
Royset
,
J. O.
,
Der Kiureghian
,
A.
, and
Polak
,
E.
, 2001, “
Reliability-Based Optimal Structural Design by the Decoupling Approach
,”
Reliab. Eng. Syst. Saf.
0951-8320,
73
, pp.
213
221
.
40.
Chen
,
X.
,
Hasselman
,
T. K.
, and
Neill
,
D. J.
, 1997, “
Reliability Based Structural Design Optimization for Practical Applications
,”
Proceedings of the 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
.
41.
Ba-abbad
,
M. A.
,
Kapania
,
R. K.
, and
Nikolaidis
,
E.
, 2005, “
A New Approach for System Reliability - Based Design Optimization
,”
Proceedings of SAE World Congress
,
Detroit
, MI, Paper No. 2005-01-0348.
42.
von Neumann
,
J.
, and
Morgenstern
,
O.
, 1953,
Theory of Games and Economic Behavior
,
Princeton University Press
, Princeton, NJ, Second Edition.
43.
Arrow
,
K. J.
, and
Raynaud
,
H.
, 1986,
Social Choice and Multicriterion Decision-Making
,
MIT Press
, Cambridge, MA.
44.
Wu
,
Y.-T.
,
Shin
,
Y.
,
Sues
,
R.
, and
Cesare
,
M.
, 2001, “
Safety – Factor Based Approach for Probabilistic – Based Design Optimization
,” 42nd, AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Seattle, WA.
You do not currently have access to this content.