Abstract

The product development process involves communication and compromise among interacting and often competing objectives from marketing, design, and manufacturing perspectives. Methods for negotiating these perspectives play an important role in the process. For example, design for manufacturing (DFM) analyses aim to incorporate manufacturing requirements into product design decision making to reduce product complexity and cost, which generally increases profitability. However, when design characteristics have market consequences, it is important to quantify explicitly the tradeoffs between the reduced cost and reduced revenue resulting from designs that are less expensive to manufacture but also less desirable in the marketplace. In this article we leverage existing models for coordinating marketing and design perspectives by incorporating quantitative models of manufacturing investment and production allocation. The resulting methodology allows a quantitative assessment of tradeoffs among product functionality, market performance, and manufacturing costs to achieve product line solutions with optimal profitability.

1.
Boothroyd
,
G.
,
Dewhurst
,
P.
, and
Knight
,
W.
, 1994,
Product Design for Manufacture and Assembly
,
Marcel Dekker
, New York.
2.
Bralla
,
J.
, 1999,
Design for Manufacturability Handbook
,
McGraw-Hill
, New York.
3.
Herrmann
,
J. W.
,
Cooper
,
J.
,
Gupta
,
S. K.
,
Hayes
,
C. C.
,
Ishii
,
K.
,
Kazmer
,
D.
,
Sandborn
,
P. A.
, and
Wood
,
W. H.
, 2004 “
New Directions in Design for Manufacturing
,”
Proceedings of the ASME Design Engineering Technical Conferences
DETC2004-57770, 28 Sept.–2 Oct.
Salt Lake City
,
Utah
.
4.
Taylor
,
D. G.
,
English
,
J. R.
, and
Graves
,
R. J.
, 1994, “
Designing New Products: Compatibility With Existing Product Facilities and Anticipated Product Mix
,”
Integr. Manuf. Syst.
0957-6061
5
, pp.
13
21
.
5.
Hazelrigg
,
G. A.
, 1988, “
A Framework For Decision-Based Engineering Design
,”
ASME J. Mech. Des.
1050-0472,
120
, pp.
653
658
.
6.
Wassenaar
,
H.
, and
Chen
,
W.
, 2003, “
An Approach to Decision-Based Design
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
490
497
.
7.
Gu
,
X.
,
Renaud
,
J. E.
,
Ashe
,
L. M.
,
Batill
,
S. M.
,
Budhiraja
,
A. S.
, and
Krajewski
,
L. J.
, 2002, “
Decision-Based Collaborative Optimization
J. Mech. Des.
1050-0472,
124
, pp.
1
13
.
8.
Georgiopoulos
,
P.
,
Jonsson
,
M.
, and
Papalambros
,
P. Y.
, 2005, “
Linking Optimal Design Decisions to the Theory of the Firm: The Case of Resource Allocation
,”
J. Mech. Des.
1050-0472,
127
, pp.
358
366
.
9.
Michalek
,
J. J.
,
Feinberg
,
F. M.
, and
Papalambros
,
P. Y.
, 2005, “
Linking Marketing and Engineering Product Design Decisions Via Analytical Target Cascading
,”
J. Product Innovation Manage.
,
22
, pp.
42
62
.
10.
Michalek
,
J. J.
, 2005,
Preference Coordination in Engineering Design Decision-Making
, PHD Dissertation,
University of Michigan
,
Ann Arbor
.
11.
Li
,
H.
, and
Azarm
,
S.
, 2002, “
An Approach For Product Line Design Selection Under Uncertainty and Competition
,”
ASME J. Mech. Des.
1050-0472,
124
, pp.
385
392
.
12.
Kusiak
,
A.
, 1993,
Concurrent Engineering: Automation, Tools, and Techniques
,
Wiley
, New York.
13.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
, 2000, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
481
489
.
14.
Choudhary
,
R.
,
Malkawi
,
A
, and
Papalambros
,
P. Y.
, 2005, “
Analytic Target Cascading in Simulation-Based Building Design
,”
Autom. Constr.
0926-5805,
14
(
4
), pp.
551
568
.
15.
Michelena
,
N.
,
Park
,
H.
, and
Papalambros
,
P.
, 2003, “
Convergence Properties of Analytical Target Cascading
,”
AIAA J.
0001-1452,
41
, pp.
897
905
.
16.
Michalek
,
J. J.
, and
Papalambros
,
P. Y.
, 2005, “
An Efficient Weighting Update Method to Achieve Acceptable Consistency Deviation in Analytical Target Cascading
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
206
214
.
17.
Tosserams
,
S.
,
Etman
,
L. F. P.
,
Papalambros
,
P. Y.
, and
Rooda
,
J. E.
, 2006, “
An Augmented Lagrangian Relaxation For Analytical Target Cascading Using the Alternating Direction Method of Multipliers
,”
Struct. Multidiscip. Optim.
1615-147X,
31
(
3
), pp.
176
189
.
18.
Sriraman
,
N.
,
Imfeld
,
S.
, and
Swisher
,
S.
, 2002 “
Optimal Part Family and Production Module Planning With Scalable Capacity
,” unpublished document, University of Michigan Department of Mechanical Engineering.
19.
Wassenaar
,
H. J.
,
Chen
,
W.
,
Cheng
,
J.
, and
Sudjianto
,
A.
, 2004, “
An integrated latent variable choice modeling approach to enhancing product demand modeling
,”
Proceedings of the ASME Design Engineering Technical Conferences
, DETC2004-57487,
Salt Lake City
,
UT
, 28 Sept.–2 Oct.
20.
Hu
,
S. J.
, and
Koren
,
Y.
, 2005, “
Reconsider Machine Layout to Optimize Production
,”
Manuf. Eng.
0361-0853,
134
(
2
), pp.
81
90
.
21.
Kurnaz
,
S.
,
Cohn
,
A.
, and
Koren
,
Y.
, 2005, “
A Framework For Evaluating Production Policies to Improve Customer Responsiveness
,”
CIRP Ann.
0007-8506
54
(
1
), pp.
401
406
.
22.
Kota
,
S.
,
Sethuraman
,
K.
, and
Miller
,
R.
, 2000, “
A Metric For Evaluating Design Commonality in Product Families
,”
J. Mech. Des.
1050-0472,
122
, pp.
403
410
.
23.
Simpson
,
T.
, 2004, “
Product Platform Design and Customization: Status and Promise
,”
Artif. Intell. Eng. Des. Anal. Manuf.
0890-0604
18
, pp.
3
20
.
24.
DFMA: Design For Manufacture and Assembly, software by Boothroyd Dewhurst, accessed on 7 November 2004 <http://www.dfma.comhttp://www.dfma.com>.
25.
Georgiopoulos
,
P.
,
Fellini
,
R.
,
Sasena
,
M.
, and
Papalambros
,
P.
2002, “
Optimal Design Decisions in Product Portfolio Valuation
,”
Proceedings of the 2002 ASME Design Automation Conference
, DAC- 34097, Montreal,
Quebec
,
Canada
, 29 September–2 October.
26.
Asl
,
F. M.
, and
Ulsoy
,
A. G.
, 2002, “
Capacity Management in Reconfigurable Manufacturing Systems With Non-Stationary Stochastic Market Demand
,”
ASME International Mechanical Engineering Congress and Exhibition
,
New Orleans
,
LA
.
27.
Michalek
,
J. J.
,
Papalambros
,
P. Y.
, and
Skerlos
,
S. J.
, 2004, “
A Study of Fuel Efficiency and Emission Policy Impact on Optimal Vehicle Design Decisions
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
1062
1070
.
28.
Birge
,
J. R.
,
Duenyas
,
I.
, and
Narongwanich
,
W.
, 2000 “
When Should One Invest in Reconfigurable Capacity?
,” ERC/RMS Technical Report TR98-23, University of Michigan.
29.
Koren
,
Y.
,
Heisel
,
U.
,
Jovane
,
F.
,
Moriwaki
,
T.
,
Pritschow
,
G.
,
Ulsoy
,
G.
, and
Van Brussel
,
H.
, 1999, “
Reconfigurable Manufacturing Systems
,”
CIRP Ann.
0007-8506,
48
, pp.
527
540
.
30.
Li
,
Y.
, 2006,
Diagonal Quadratic Approximation for Parallel Computing with Analytical Target Cascading
, M.S. Thesis, Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh.
31.
Michalek
,
J. J.
, and
Papalambros
,
P. Y.
, 2006, “
BB-ATC: Analytical Target Cascading Using Branch and Bound for Mixed Integer Nonlinear Programming
,”
Proceedings of the ASME International Design Engineering Technical Conferences
, DETC2006/DAC-99040, Sept. 10-13, Philadelphis, PA.
You do not currently have access to this content.