This contribution presents new considerations on the theory of type synthesis of fully parallel platforms. These considerations prove that the theory of type synthesis of fully parallel platforms can be dealt with by analyzing two types of fully parallel platforms, where the displacements of the moving platform generate a subgroup of the Euclidean group, SE(3), including in this type, 6DOF parallel platforms and lower mobility platforms or, more precisely, parallel platforms where the displacements of the moving platforms generate only a subset of the Euclidean group. The theory is based on an analysis of the subsets and subgroups of the Euclidean group, SE(3), and their intersections. The contribution shows that the different types of parallel platforms are determined by the intersections of the subgroups or subsets, of the Euclidean group, generated by the serial connecting chains or limbs of the parallel platform. From an analysis of the intersections of subgroups and subsets of the Euclidean group, this contribution presents three possibilities for the type synthesis of fully parallel platforms where the displacements of the moving platform generate a subgroup of the Euclidean group, and two possibilities for the type synthesis of fully parallel platforms where the displacements of the moving platforms generate only a subset of the Euclidean group. An example is provided for each one of these possibilities. Thus, once these possible types of synthesis are elucidated, the type synthesis of fully parallel platforms is just reduced to the synthesis of the serial connecting chains or limbs that generate the required subgroups or subsets of the Euclidean group.

1.
Hartenberg
,
R. S.
, and
Denavit
,
J.
, 1964,
Kinematic Synthesis of Linkages
,
McGraw-Hill
,
New York
.
2.
Erdman
,
A. G.
, 1993,
Modern Kinematics Developments in the Last Forty Years
,
Wiley
,
New York
.
3.
McCarthy
,
M. J.
, and
Joskowitz
,
L.
, 2001, “
Kinematic Synthesis
,”
Formal Engineering Design Synthesis
,
J.
Cagan
and
E.
Antonsson
, eds.,
Cambridge University Press
,
Cambridge
.
4.
Tsai
,
L. W.
, 2000,
Mechanism Design: Enumeration of Kinematic Structures According to Function
,
CRC
,
Boca Raton, FL
.
5.
Di Gregorio
,
R.
, and
Parenti-Castelli
,
V.
, 2002, “
Mobility Analysis of the 3-UPU Parallel Mechanism Assembled for a Pure Translational Motion
,”
ASME J. Mech. Des.
0161-8458,
124
, pp.
259
264
.
6.
Carricato
,
M.
, and
Parenti-Castelli
,
V.
, 2002, “
Singularity-Free Fully-Isotropic Translational Parallel Manipulators
,”
Int. J. Robot. Res.
0278-3649,
21
, pp.
161
174
.
7.
Carricato
,
M.
, and
Parenti-Castelli
,
V.
, 2002, “
Singularity-Free Fully-Isotropic Translational Parallel Manipulators
,”
Proceedings of the ASME DETC02 Design Engineering Technical Conferences and Computer and Information on Engineering Conference
,
Montreal, Canada
, Sept. 29–Oct. 02, Paper No. DETC2002/MECH-34301.
8.
Carricato
,
M.
, and
Parenti-Castelli
,
V.
, 2003, “
A Family of 3-DOF Translational Parallel Manipulators
,”
ASME J. Mech. Des.
0161-8458,
125
, pp.
302
307
.
9.
Kim
,
H. S.
, and
Tsai
,
L. W.
, 2002, “
Evaluation of a Cartesian Parallel Manipulator
,”
Advances in Robot Kinematics: Theory and Applications
,
J.
Lenarčič
and
F.
Thomas
, eds.,
Kluwer
,
Dordrecht
, pp.
21
28
.
10.
Kim
,
H. S.
, and
Tsai
,
L. W.
, 2003, “
Kinematic Synthesis of a Spatial 3-RPS Parallel Platform
,”
ASME J. Mech. Des.
0161-8458,
125
, pp.
92
97
.
11.
Fang
,
Y.
, and
Tsai
,
L. W.
, 2004, “
Analytical Identification of Limb Structures for Translational Parallel Manipulators
,”
J. Rob. Syst.
0741-2223,
21
, pp.
209
218
.
12.
Merlet
,
J. P.
, 2000,
Parallel Robots
,
Kluwer
,
Dordrecht
.
13.
Liao
,
Q.
, and
McCarthy
,
J. M.
, 2001, “
On the Seven Position Synthesis of a 5-SS Platform Linkage
,”
ASME J. Mech. Des.
0161-8458,
123
, pp.
74
79
.
14.
Su
,
H. J.
,
Dietmayer
,
P.
, and
McCarthy
,
J. M.
, 2003, “
Trajectory Planning for Constraint Parallel Manipulator
,”
ASME J. Mech. Des.
0161-8458,
125
, pp.
709
716
.
15.
Hervé
,
J. M.
, 1978, “
Analyse Structurelle des Mécanismes par Groupe des Déplacements
,”
Mech. Mach. Theory
0094-114X,
13
, pp.
437
450
.
16.
Hervé
,
J. M.
, 1995, “
Design of Parallel Manipulators via the Displacement Group
,”
Proceedings of the Ninth World Congress on the Theory of Machines and Mechanisms
, Milano, Aug. 20–Sept. 2, Vol.
3
, pp.
2079
2082
.
17.
Karouia
,
M.
, and
Hervé
,
J. M.
, 2004, “
New Parallel Writs: Special Limbs With Motion Dependency
,”
On Advances in Robot Kinematics
,
J.
Lenarčič
and
C.
Galletti
, eds.,
Kluwer
,
Dordrecht
, pp.
371
380
.
18.
Hervé
,
J. M.
, 2004, “
Parallel Mechanisms With Pseudo-Planar Motion Generators
,”
On Advances in Robot Kinematics
,
J.
Lenarčič
and
C.
Galletti
, eds.,
Kluwer
,
Dordrecht
, pp.
431
440
.
19.
Li
,
Q. C.
,
Huang
,
Z.
, and
Hervé
,
J. M.
, 2004, “
Type Synthesis of 3R2T 5-DOF Parallel Mechanisms Using the Lie Group of Displacements
,”
IEEE Trans. Rob. Autom.
1042-296X,
20
, pp.
173
180
.
20.
Huynh
,
P.
, and
Hervé
,
J. M.
, 2005, “
Equivalent Kinematic Chains of Three Degree-of-Freedom Tripod Mechanisms With Planar-Spherical Bonds
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
95
102
.
21.
Angeles
,
J.
, 2004, “
The Qualitative Synthesis of Parallel Manipulators
,”
ASME J. Mech. Des.
0161-8458,
126
, pp.
617
624
.
22.
Angeles
,
J.
, 2005,
Kinematic Synthesis, Lecture Notes
,
McGill University
,
Montreal, Quebec, Canada
.
23.
Angeles
,
J.
, 2005, “
The Degree of Freedom of Parallel Robots: A Group-Theoretic Approach
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
, Apr. 18–22, pp.
1017
1024
.
24.
Zhao
,
T. S.
,
Dai
,
J. S.
, and
Huang
,
Z.
, 2002, “
Geometric Analysis of Overconstrained Parallel Manipulators With Three and Four Degrees of Freedom
,”
JSME Int. J., Ser. C
1340-8062,
45
, pp.
730
740
.
25.
Huang
,
Z.
, and
Li
,
Q. C.
, 2003, “
Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using the Constraint-Synthesis Method
,”
Int. J. Robot. Res.
,
22
(
1
), pp.
59
79
. 0278-3649
26.
Li
,
Q. C.
, and
Huang
,
Z.
, 2003, “
A Family of Symmetrical Lower-Mobility Parallel Mechanisms With Spherical and Parallel Subchains
,”
J. Rob. Syst.
0741-2223,
20
, pp.
297
305
.
27.
Li
,
Q. C.
, and
Huang
,
Z.
, 2004, “
Mobility Analysis of a Novel 3-5R Parallel Mechanism Family
,”
ASME J. Mech. Des.
0161-8458,
126
, pp.
79
82
.
28.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
, 2006, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
220
229
.
29.
Meng
,
J.
,
Liu
,
G.
, and
Li
,
Z.
, 2005, “
A Geometric Theory for Synthesis and Analysis of Sub 6-DOF Parallel Manipulators
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
, Barcelona, Spain, Apr. 18–22, pp.
2949
2954
.
30.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2002, “
Type Synthesis of Linear Translational Parallel Manipulators
,”
Advances in Robot Kinematics: Theory and Applications
,
J.
Lenarčič
and
F.
Thomas
, eds.,
Kluwer
,
Dordrecht
, pp.
411
420
.
31.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2004, “
Type Synthesis of 3-DOF Translational Parallel Manipulators Based on Screw Theory
,”
ASME J. Mech. Des.
0161-8458,
126
, pp.
83
92
.
32.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2004, “
Type Synthesis of 3-DOF Spherical Parallel Manipulators Based on Screw Theory
,”
ASME J. Mech. Des.
0161-8458,
126
, pp.
101
108
.
33.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2005, “
Type Synthesis of 3-DOF PPR-Equivalent Parallel Manipulators Based on Screw Theory and the Concept of Virtual Chain
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
1113
1121
.
34.
Kong
,
X.
, 2003, “
Type Synthesis and Kinematics of General and Analytical Parallel Mechanisms
,” Ph.D. thesis, Université Laval, Quebec City.
35.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2005, “
Type Synthesis of 5-DOF Parallel Manipulators Based on Screw Theory
,”
J. Rob. Syst.
0741-2223,
22
, pp.
535
547
.
36.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2007,
Type Synthesis of Parallel Mechanisms
,
Springer-Verlag
,
Heidelberg
.
37.
Gogu
,
G.
, 2005, “
Mobility of Mechanisms: A Critical Review
,”
Mech. Mach. Theory
0094-114X,
40
, pp.
1068
1097
.
38.
Gogu
,
G.
, 2005, “
Chebychev-Grübler-Kutzbach’s Criterion for Mobility Calculations of Multi-Loop Mechanisms Revisited via Theory of Linear Transformations
,
Eur. J. Mech. A/Solids
0997-7538,
24
, pp.
427
441
.
39.
Gogu
,
G.
, 2004, “
Structural Synthesis of Fully-Isotropic Translational Parallel Robots via Theory of Linear Transformations
,”
Eur. J. Mech. A/Solids
0997-7538,
23
, pp.
1021
1039
.
40.
Gogu
,
G.
, 2006, “
Fully-Isotropic Parallel Manipulators With Five Degrees of Freedom
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
, Apr. 18–22, pp.
4025
4030
.
41.
Gogu
,
G.
, 2007, “
Structural Synthesis of Fully-Isotropic Parallel Robots With Schönflies Motion via Theory of Linear Transformations and Evolutionary Morphology
,”
Eur. J. Mech. A/Solids
0997-7538,
26
, pp.
242
269
.
42.
Gogu
,
G.
, 2007,
Structural Synthesis of Parallel Robots. Part I: Methodology
,
Springer-Verlag
,
Berlin
.
43.
Martínez
,
J. M. R.
, and
Ravani
,
B.
, 2003, “
On Mobility Analysis of Linkage Using Group Theory
,”
ASME J. Mech. Des.
0161-8458,
125
, pp.
70
80
.
44.
Rico
,
J. M.
, and
Ravani
,
B.
, 2006, “
On Calculating the Degrees of Freedom or Mobility of Overconstrained Linkages: Single-Loop Exceptional Linkages
,”
ASME J. Mech. Des.
,
129
, pp.
301
311
. 0161-8458
45.
Rico
,
J. M.
,
Gallardo
,
J.
, and
Ravani
,
B.
, 2003, “
Lie Algebra and the Mobility of Kinematic Chains
,”
J. Rob. Syst.
0741-2223,
20
, pp.
477
499
.
46.
Rico
,
J. M.
,
Aguilera
,
L. D.
,
Gallardo
,
J.
,
Rodríguez
,
R.
,
Orozco
,
H.
, and
Barrera
,
J. M.
, 2006, “
A More General Mobility Criterion for Parallel Manipulators
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
207
219
.
47.
Rico
,
J. M.
,
Aguilera
,
L. D.
,
Gallardo
,
J.
,
Rodríguez
,
R.
,
Orozco
,
H.
, and
Barrera
,
J. M.
, 2006, “
A Group Theoretical Derivation of a More General Mobility Criterion for Parallel Manipulators
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
220
, pp.
969
987
.
48.
Fanghella
,
P.
, and
Galletti
,
C.
, 1995, “
Metric Relations and Displacement Groups in Mechanism and Robot Kinematics
,”
ASME J. Mech. Des.
0161-8458,
117
, pp.
470
478
.
49.
Fanghella
,
P.
, 1988, “
Kinematics of Spatial Linkages by Group Algebra: A Structure-Based Approach
,”
Mech. Mach. Theory
0094-114X,
23
, pp.
171
183
.
You do not currently have access to this content.