The maximal singularity-free workspace of parallel mechanisms is a desirable criterion in robot design. However, for a 6DOF parallel mechanism, it is very difficult to find an analytic method to determine the maximal singularity-free workspace around a prescribed point for a given orientation. Hence, a numerical algorithm is presented in this paper to compute the maximal singularity-free workspace as well as the corresponding leg length ranges of the Gough–Stewart platform. This algorithm is based on the relationship between the maximal singularity-free workspace and the singularity surface. Case studies with different orientations are performed to demonstrate the presented algorithm. The obtained results can be applied to the geometric design or parameter (leg length) setup of this type of parallel robots.

1.
Gosselin
,
C.
, 1990, “
Determination of the Workspace of 6-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
0161-8458,
112
, pp.
331
336
.
2.
Merlet
,
J.-P.
, 1999, “
Determination of 6D Workspaces of Gough-Type Parallel Manipulator and Comparison Between Different Geometries
,”
Int. J. Robot. Res.
0278-3649,
18
(
9
), pp.
902
916
.
3.
Monsarrat
,
B.
, and
Gosselin
,
C.
, 2003, “
Workspace Analysis and Optimal Design of a 3-leg 6-DOF Parallel Platform Mechanism
,”
IEEE Trans. Rob. Autom.
,
19
(
6
), pp.
954
956
. 1042-296X
4.
Huang
,
T.
,
Wang
,
J.
, and
Whitehouse
,
D.
, 1999, “
Closed Form Solution to Workspace of Hexapod-Based Virtual Axis Machine Tools
,”
ASME J. Mech. Des.
0161-8458,
121
(
1
), pp.
26
31
.
5.
Pernkopf
,
F.
, and
Husty
,
M.
, 2006, “
Workspace Analysis of Stewart–Gough-Type Parallel Manipulators
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
220
(
7
), pp.
1019
1032
. 0022-2542
6.
Gosselin
,
C.
, and
Angeles
,
J.
, 1990, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
3
), pp.
281
290
.
7.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Behhabid
,
B.
, 1994, “
Singularity Analysis of Mechanisms and Robots Via a Velocity-Equation Model of the Instantaneous Kinematics
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
San Diego, CA
, May 8–13, pp.
986
991
.
8.
Sefrioui
,
J.
, and
Gosselin
,
C.
, 1995, “
On the Quadratic Nature of the Singularity Curves of Planar Three-Degree-Of-Freedom Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
30
(
4
), pp.
533
551
.
9.
Wang
,
J.
, and
Gosselin
,
C.
, 2004, “
Singularity Loci of a Special Class of Spherical 3D of Parallel Mechanisms With Prismatic Actuators
,”
ASME J. Mech. Des.
0161-8458,
126
(
2
), pp.
319
326
.
10.
Bonev
,
I.
,
Zlatanov
,
D.
, and
Gosselin
,
C.
, 2003, “
Singularity Analysis of 3-DOF Planar Parallel Mechanisms Via Screw Theory
,”
ASME J. Mech. Des.
0161-8458,
125
(
3
), pp.
573
581
.
11.
Huang
,
Z.
,
Cao
,
Y.
,
Li
,
Y.
, and
Chen
,
L.
, 2006, “
Structure and Property of the Singularity Loci of the 3/6-Stewart–Gough Platform for General Orientations
,”
Robotica
,
24
, pp.
75
84
. 0263-5747
12.
Collins
,
C. L.
, and
McCarthy
,
J. M.
, 1998, “
The Quartic Singularity Surfaces of Planar Platforms in the Clifford Algebra of the Projective Plane
,”
Mech. Mach. Theory
0094-114X,
33
(
7
), pp.
931
944
.
13.
Fichter
,
E. F.
, 1986, “
A Stewart Platform-Based Manipulator: General Theory and Practical Construction
,”
Int. J. Robot. Res.
0278-3649,
5
(
2
), pp.
157
182
.
14.
Merlet
,
J.-P.
, 1989, “
Singular Configurations of Parallel Manipulators and Grassmann Geometry
,”
Int. J. Robot. Res.
0278-3649,
8
(
5
), pp.
45
56
.
15.
Hunt
,
K. H.
, and
McAree
,
P. R.
, 1998, “
The Octahedral Manipulator: Geometry and Mobility
,”
Int. J. Robot. Res.
,
17
(
8
), pp.
868
885
. 0278-3649
16.
McAree
,
P. R.
, and
Daniel
,
R. W.
, 1999, “
An Explanation of Never-Special Assembly Changing Motions For 3-3 Parallel Manipulators
,”
Int. J. Robot. Res.
0278-3649,
18
(
6
), pp.
556
574
.
17.
Mayer St-Onge
,
B.
, and
Gosselin
,
C.
, 2000, “
Singularity Analysis and Representation of the General Gough–Stewart Platform
,”
Int. J. Robot. Res.
0278-3649,
19
(
3
), pp.
271
288
.
18.
Li
,
H.
,
Gosselin
,
C.
,
Richard
,
M.
, and
Mayer-St-Onge
,
B.
, 2006, “
Analytic Form of the Six-Dimensional Singularity Locus of the General Gough–Stewart Platform
,”
ASME J. Mech. Des.
0161-8458,
128
(
1
), pp.
279
287
.
19.
Merlet
,
J.-P.
, 1994, “
Trajectory Verification in the Workspace for Parallel Manipulator
,”
Int. J. Robot. Res.
,
13
(
4
), pp.
326
333
. 0278-3649
20.
Bhattacharya
,
S.
,
Hatwal
,
H.
, and
Ghosh
,
A.
, 1998, “
Comparison of an Exact and an Approximate Method of Singularity Avoidance in Platform Type Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
33
(
7
), pp.
965
974
.
21.
Dash
,
A. K.
,
Chen
,
I. M.
,
Yeo
,
S. H.
, and
Yang
G.
, 2003, “
Singularity-Free Path Planning of Parallel Manipulators Using Clustering Algorithm and Line Geometry
,”
Proceedings of the 2003 IEEE International Conference on Robotics and Automation
,
Taipei, Taiwan
, Sept. 14–19, pp.
761
766
.
22.
Sen
,
S.
,
Dasgupta
,
B.
, and
Mallik
,
A. K.
, 2003, “
Variational Approach for Singularity-Free Path-Planning of Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
38
(
11
), pp.
1165
1183
.
23.
Merlet
,
J.-P.
, and
Daney
,
D.
, 2001, “
A Formal-Numerical Approach to Determine the Presence of Singularity Within the Workspace of a Parallel Robot
,”
Proceedings of the International Workshop on Computational Kinematics
,
Seoul
, May 20–22, pp.
167
176
.
24.
Tale-Masouleh
,
M.
, and
Gosselin
,
C.
, 2007, “
Determination of Singularity-Free Zones in the Workspace of Planar 3-PRR Parallel Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
129
(
6
), pp.
649
652
.
25.
Li
,
H.
,
Gosselin
,
C.
, and
Richard
,
M.
, 2007, “
Determination of the Maximal Singularity-Free Zones in the Six-Dimensional Workspace of the General Gough–Stewart Platform
,”
Mech. Mach. Theory
0094-114X,
42
(
4
), pp.
497
511
.
You do not currently have access to this content.