An integrated design framework that employs multiscale analysis to facilitate concurrent product, material, and manufacturing process design is presented in this work. To account for uncertainties associated with material structures and their impact on product performance across multiple scales, efficient computational techniques are developed for propagating material uncertainty with random field representation. Random field is employed to realistically model the uncertainty existing in material microstructure, which spatially varies in a product inherited from the manufacturing process. To reduce the dimensionality of random field representation, a reduced order Karhunen–Loeve expansion is used with a discretization scheme applied to finite-element meshes. The univariate dimension reduction method and the Gaussian quadrature formula are used to efficiently quantify the uncertainties in product performance in terms of its statistical moments, which are critical information for design under uncertainty. A control arm example is used to demonstrate the proposed approach. The impact of the initial microscale porosity random field produced during a casting process on the product damage is studied and a reliability-based design of the control arm is performed.

1.
Hao
,
S.
,
Liu
,
W. K.
,
Moran
,
B.
,
Vernerey
,
F.
, and
Olson
,
G. B.
, 2004, “
Multi-Scale Constitutive Model and Computational Framework for the Design of Ultra-High Strength, High Toughness Steels
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
1865
1908
.
2.
Vernerey
,
F. J.
, 2006, “
Multi-Scale Mechanics of Microstructured Materials
,” Ph.D. thesis, Northwestern University, Evanston.
3.
Gall
,
K.
, and
Horstemeyer
,
M. F.
, 2000, “
Integration of Basic Materials Research Into the Design of Cast Components by a Multi-Scale Methodology
,”
ASME J. Eng. Mater. Technol.
0094-4289,
122
, pp.
355
362
.
4.
Panchal
,
J. H.
,
Choi
,
H. -J.
,
Shepherd
,
J.
,
Allen
,
J. K.
,
McDowell
,
D. L.
, and
Mistree
,
F.
, 2005, “
A Strategy for Simulation-Based Design of Multiscale, Multi-Functional Products and Associated Design Processes
,”
Proceedings of ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Long Beach, CA, Sept. 24–28.
5.
Panchal
,
J. H.
,
Choi
,
H. -J.
,
Allen
,
J. K.
,
McDowell
,
D. L.
, and
Mistree
,
F.
, 2006, “
Designing Design Processes for Integrated Materials and Products Realization: A Multifunctional Energetic Structural Material Example
,”
Proceedings of ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Philadelphia, PA, Sept. 10–13.
6.
Allen
,
J. K.
,
Seepersad
,
C.
,
Choi
,
H. -J.
, and
Mistree
,
F.
, 2006, “
Robust Design for Multiscale and Multidisciplinary Applications
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
832
843
.
7.
Alzebdeh
,
K.
,
Al-Ostaz
,
A.
,
Jasiuk
,
I.
, and
Ostoja-Starzewski
,
M.
, 1998, “
Fracture of Random Matrix-Inclusion Composites: Scale Effects and Statistics
,”
Int. J. Solids Struct.
0020-7683,
35
(
19
), pp.
2537
2566
.
8.
Bystrom
,
J.
, 2003, “
Influence of the Inclusions Distribution on the Effective Properties of Heterogeneous Media
,”
Composites, Part B
1359-8368,
34
, pp.
587
592
.
9.
Yin
,
X.
,
Chen
,
W.
,
To
,
A.
,
McVeigh
,
C.
, and
Liu
,
W. K.
, 2007, “
Statistical Volume Element Method for Predicting Microstructure-Constitutive Property Relations
,”
Comput. Methods Appl. Mech. Eng.
, special issue on stochastic modeling of multiscale systems.
10.
Mayer
,
H.
,
Papakyriacou
,
M.
,
Zettl
,
B.
, and
Stanzl-Tschegg
,
S. E.
, 2003, “
Influence of Porosity on the Fatigue Limit of Die Cast Magnesium and Aluminium Alloys
,”
Int. J. Fatigue
0142-1123,
25
, pp.
245
256
.
11.
Lee
,
P. D.
,
Chirazi
,
A.
, and
See
,
D.
, 2001, “
Modeling Microporosity in Aluminum-Silicon Alloys: A Review
,”
J. Light Met.
,
1
, pp.
15
30
. 1471-5317
12.
Surendranath
,
H.
,
Bruck
,
H. A.
, and
Gowrisankaran
,
S.
, 2003, “
Enhancing the Optimization of Material Distributions in Composite Structures Using Gradient Architectures
,”
Int. J. Solids Struct.
,
40
, pp.
2999
3020
. 0020-7683
13.
Rahman
,
S.
, and
Chakraborty
,
A.
, 2007, “
A Stochastic Micromechanical Model for Elastic Properties of Functionally Graded Materials
,”
Mech. Mater.
,
39
, pp.
548
563
. 0167-6636
14.
Kontsos
,
A.
, and
Spanos
,
P. D.
, 2007, “
A Monte Carlo Finite Element Method for Determining the Young’s Modulus of Polymer Nanocomposites Using Nanoindentation Data
,”
Proceedings of ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Las Vegas, NV, Sept. 4–7.
15.
Allen
,
M.
,
Raulli
,
M.
,
Maute
,
K.
, and
Frangopol
,
D. M.
, 2004, “
Reliability-Based Analysis and Design Optimization of Electrostatically Actuated MEMS
,”
Comput. Struct.
0045-7949,
82
, pp.
1007
1020
.
16.
Wittwer
,
J. W.
,
Baker
,
M. S.
, and
Howell
,
L. L.
, 2006, “
Robust Design and Model Validation of Nonlinear Compliant Micromechanisms
,”
J. Microelectromech. Syst.
1057-7157,
15
(
1
), pp.
33
41
.
17.
Liu
,
H.
,
Chen
,
W.
,
Sheng
,
J.
, and
Gea
,
H. C.
, 2003, “
Application of the Sequential Optimization and Reliability Assessment Method to Structural Design Problems
,”
Proceedings of DETC’03 ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Chicago, IL, Sept. 2–6, 2003.
18.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
, 1991,
Stochastic Finite Element Analysis: A Spectral Approach
,
Springer-Verlag
,
New York
.
19.
Haldar
,
A.
, and
Mahadevan
,
S.
, 2000,
Reliability Assessment Using Stochastic Finite Element Analysis
,
Wiley
,
New York
.
20.
Liu
,
W. K.
,
Belytschko
,
T.
, and
Mani
,
A.
, 1986, “
Random Field Finite Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
23
(
10
), pp.
1831
1845
.
21.
Liu
,
W. K.
,
Belytschko
,
T.
, and
Mani
,
A.
, 1986, “
Probabilistic Finite Elements for Nonlinear Structural Dynamics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
56
(
1
), pp.
61
81
.
22.
Xiu
,
D.
, and
Karniadakis
,
G. E.
, 2002, “
Modeling Uncertainty in Steady State Diffusion Problem Via Generalized Polynomial Chaos
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
, pp.
4927
4948
.
23.
Choi
,
S. -K.
,
Fathianathan
,
M.
, and
Schaefer
,
D.
, 2007, “
Optimization of Complex Engineered Systems Under Risk and Uncertainty
,”
Proceedings of ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Las Vegas, NV, Sept. 4–7.
24.
Loeve
,
M.
, 1978,
Probability Theory II
,
Springer-Verlag
,
New York
.
25.
Rahman
,
S.
, and
Xu
,
H.
, 2004, “
A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics
,”
Probab. Eng. Mech.
0266-8920,
19
, pp.
393
408
.
26.
Xu
,
H.
, and
Rahman
,
S.
, 2004, “
A Generalized Dimension-Reduction Method for Multidimensional Integration in Stochastic Mechanics
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
, pp.
1992
2019
.
27.
Lee
,
S. H.
,
Choi
,
H. S.
, and
Kwak
,
B. M.
, 2008, “
Multi-Level Design of Experiments for Statistical Moment and Probability Calculation
,”
Struct. Multidiscip. Optim.
1615-147X,
37
, pp.
57
70
.
28.
Jin
,
R.
,
Chen
,
W.
, and
Sudjianto
,
A.
, 2005, “
An Efficient Algorithm for Constructing Optimal Design of Computer Experiments
,”
J. Stat. Plan. Infer.
0378-3758,
134
(
1
), pp.
268
287
.
29.
Hedayat
,
A. S.
,
Stufken
,
J.
, and
Sloane
,
N. J.
, 1999,
Orthogonal Arrays: Theory and Applications
,
Springer-Verlag
,
New York
.
30.
Barton
,
R. R.
, 1998, “
Simulation Metamodels
,”
Proceedings of the 1998 Winter Simulation Conference (WSC’98)
, Washington, DC, pp.
167
174
.
31.
Booker
,
A. J.
,
Dennis
,
J. E.
,
Frank
,
P. D.
,
Serafini
,
D. B.
,
Torczon
,
V.
, and
Trosset
,
M. W.
, 1999, “
A Rigorous Framework for Optimization of Expensive Functions by Surrogates
,”
Struct. Optim.
0934-4373,
17
, pp.
1
13
.
32.
Jin
,
R.
, 2004, “
Enhancements of Metamodeling Techniques in Engineering Design
,” Ph.D. thesis, University of Illinois at Chicago, Chicago, IL.
33.
Rahman
,
S.
, and
Xu
,
H.
, 2005, “
A Meshless Method for Computational Stochastic Mechanics
,”
International Journal for Computational Methods in Engineering Science and Mechanics
,
6
, pp.
41
58
.
34.
Zhang
,
J.
, and
Ellingwood
,
B.
, 1994, “
Orthogonal Series Expansion of Random Fields in Reliability Analysis
,”
J. Eng. Mech.
0733-9399,
120
, pp.
2660
2677
.
35.
Ghanem
,
R. G.
, and
Doostan
,
A.
, 2006, “
On the Construction and Analysis of Stochastic Models: Characterization and Propagation of the Errors Associated With Limited Data
,”
J. Comput. Phys.
0021-9991,
217
, pp.
63
81
.
36.
Youn
,
B. D.
,
Xi
,
Z.
,
Wells
,
L. J.
, and
Gorsich
,
D. J.
, 2007, “
Sensitivity-Free Approach for Reliability-Based Robust Design Optimization
,”
Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Las Vegas, NV, Sept. 4–7.
37.
Lee
,
I.
,
Choi
,
K. K.
, and
Du
,
L.
, 2007, “
Reliability Analysis Method Using MPP-Based Dimension Reduction Method (DRM)
,”
Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Las Vegas, NV, Sept. 4–7.
38.
Lee
,
S. H.
, and
Chen
,
W.
, 2008,
A Comparative Study of Uncertainty Propagation Methods for Black-Box Type Problems
,”
Struct. Multidiscip. Optim.
1615-147X,
37
, pp.
239
253
.
39.
Lee
,
S. H.
,
Chen
,
W.
, and
Kwak
,
B. M.
, 2008, “
Robust Design With Arbitrary Distribution Using Gauss-Type Quadrature Formula
,”
12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, Victoria, BC, Canada.
40.
Krylov
,
V. I.
, 1962,
Approximate Calculation of Integrals
, A. H. Stroud, translator,
Macmillan
,
New York
.
41.
Gautschi
,
W.
, 1994, “
Algorithm 726; ORTHPOL—A Package of Routines for Generating Orthogonal Polynomials and Gauss-Type Quadrature Rules
,”
ACM Trans. Math. Softw.
0098-3500,
20
(
1
), pp.
21
62
.
42.
Nemat-Nasser
,
S.
, and
Hori
,
M.
, 1998,
Micromechanics: Overall Properties of Heterogeneous Materials
,
North-Holland
,
Amsterdam
.
43.
Kim
,
H. M.
,
Rideout
,
D. G.
,
Papalambros
,
P. Y.
, and
Stein
,
J. L.
, 2003, “
Analytical Target Cascading in Automotive Vehicle Design
,”
ASME J. Mech. Des.
0161-8458,
125
(
3
), pp.
481
489
.
44.
Liu
,
H.
,
Chen
,
W.
,
Kokkolaras
,
M.
,
Papalambros
,
P. Y.
, and
Kim
,
H. M.
, 2005, “
Probabilistic Analytical Target Cascading: A Moment Matching Formulation for Multilevel Optimization Under Uncertainty
,”
Proceedings of ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Long Beach, CA, Sept. 24–28.
45.
Horstemeyer
,
M. F.
,
Osborne
,
R. J.
, and
Penrod
,
D. E.
, 2002, “
Microstructure-Property Analysis and Optimization of Control Arm
,”
Trans. Am. Foundry Soc.
0065-8375,
2–36
, pp.
297
314
.
46.
Horstemeyer
,
M. F.
, 2001, “
From Atoms to Autos. A New Design Paradigm Using Microstructure—Property Modeling Part 1: Monotonic Loading Conditions
,” Sandia National Laboratories, Report No. SAND2000–8662.
47.
Horstemeyer
,
M. F.
,
Lathrop
,
J.
,
Gokhale
,
A. M.
, and
Dighe
,
M.
, 2000, “
Modeling Stress State Dependent Damage Evolution in a Cast Al–Si–Mg Aluminum Alloy
,”
Theor. Appl. Fract. Mech.
0167-8442,
33
, pp.
31
47
.
48.
Horstemeyer
,
M. F.
, and
Gokhale
,
A. M.
, 1999, “
A Void-Crack Nucleation Model for Ductile Metals
,”
Int. J. Solids Struct.
0020-7683,
36
, pp.
5029
5055
.
49.
Box
,
G. E. P.
,
Hunter
,
W. G.
, and
Hunter
,
J. S.
, 2005,
Statistics for Experimenters: Design, Innovation, and Discovery
,
Wiley-Interscience
,
New York
.
50.
Krishnan
,
V.
, 2006,
Probability and Random Processes
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
51.
Vanmarcke
,
E.
, 1983,
Random Fields: Analysis and Synthesis
,
MIT Press
,
Cambridge, MA
.
52.
Hall
,
P.
,
Fisher
,
N. I.
, and
Hoffmann
,
B.
, 1994, “
On the Nonparametric Estimation of Covariance Functions
,”
Ann. Stat.
,
22
(
4
), pp.
2115
2134
. 0090-5364
53.
Parkinson
,
A.
,
Sorensen
,
C.
, and
Pourhassan
,
N.
, 1993, “
A General Approach for Robust Optimal Design
,”
ASME J. Mech. Des.
0161-8458,
115
, pp.
74
80
.
You do not currently have access to this content.