This paper derives formulas for evaluating the flowrate of gerotor pumps. The flowrate formulas are based on a deviation function, and the pitch and generating curves can be circular or noncircular. Two dimensionless parameters, the lobe noncircularity and the pitch noncircularity, are introduced so that gerotor performance can be analyzed systematically.
1.
Colbourne
, J. R.
, 1974, “The Geometry of Trochoid Envelopes and Their Application in Rotary Pumps
,” Mech. Mach. Theory
0094-114X, 9
(3–4
), pp. 421
–435
.2.
Litvin
, F. L.
, and Feng
, P. -H.
, 1996, “Computerized Design and Generation of Cycloidal Gearings
,” Mech. Mach. Theory
0094-114X, 31
(7
), pp. 891
–911
.3.
Shung
, J. B.
, and Pennock
, G. R.
, 1994, “Geometry for Trochoidal-Type Machines With Conjugate Envelopes
,” Mech. Mach. Theory
0094-114X, 29
(1
), pp. 25
–42
.4.
Colbourne
, J. R.
, 1975, “Gear Shape and Theoretical Flow Rate in Internal Gear Pumps
,” Trans. Can. Soc. Mech. Eng.
0315-8977, 3
(4
), pp. 215
–223
.5.
Beard
, J. E.
, Hall
, A. S.
, and Soedel
, W.
, 1991, “Comparison of Hypotrochoidal and Epitrochoidal Gerotors
,” ASME J. Mech. Des.
0161-8458, 113
, pp. 133
–141
.6.
Beard
, J. E.
, Yannietll
, D. W.
, and Pennock
, G. R.
, 1992, “The Effects of the Generating Pin Size and Placement on the Curvature and Displacement of Epitrochoidal Gerotors
,” Mech. Mach. Theory
0094-114X, 27
(4
), pp. 373
–389
.7.
Adams
, G. P.
, and Beard
, J. D.
, 1997, “Comparison of Helical and Skewed Axis Gerotor Pumps
,” Mech. Mach. Theory
0094-114X, 32
(6
), pp. 729
–742
.8.
Adams
, G. P.
, and Beard
, J. E.
, 1994, “Gerotor Configurations With Non-Uniform Cross Sections
,” Machine Elements and Machine Dynamics: Proceedings of the 23rd Biennial Mechanisms Conference
, Minneapolis, MN, Vol. 71
, pp. 283
–289
.9.
Chang
, Y.
, and Kim
, J.
, 2007, “Development of an Integrated System for the Automated Design of a Gerotor Oil Pump
,” ASME J. Mech. Des.
0161-8458, 129
(10
), pp. 1099
–1105
.10.
Hsieh
, C. -F.
, and Hwang
, Y. -W.
, 2007, “A Geometric Design for a Gerotor Pump With High Area Efficiency
,” ASME J. Mech. Des.
0161-8458, 129
(12
), pp. 1269
–1377
.11.
Hwang
, Y. -W.
, and Hsieh
, C. -F.
, 2007, “Geometric Design Using Hypotrochoid and Nonundercutting Conditions for an Internal Cycloidal Gear
,” ASME J. Mech. Des.
0161-8458, 129
(4
), pp. 413
–420
.12.
Tong
, S. H.
, and Yang
, D. C. H.
, 2000, “On the Generation of New Lobe Pumps for Higher Pumping Flowrate
,” Mech. Mach. Theory
0094-114X, 35
(7
), pp. 997
–1012
.13.
Yang
, D. C. H.
, and Tong
, S. H.
, 2002, “Specific Flowrate of Deviation-Function Based Lobe Pumps—Derivation and Analysis
,” Mech. Mach. Theory
0094-114X, 37
(10
), pp. 1025
–1042
.14.
Yang
, D. C. H.
, Tong
, S. -H.
, and Lin
, J.
, 1999, “Deviation-Function Based Pitch Curve Modification for Conjugate Pair Design
,” ASME J. Mech. Des.
0161-8458, 121
(4
), pp. 579
–586
.15.
Tong
, S. -H.
, Yan
, J.
, and Yang
, D. C. H.
, 2009, “Design of Deviation-Function Based Gerotors
,” Mech. Mach. Theory
0094-114X, 44
(8
), pp. 1595
–1606
.16.
Yan
, J
, Yang
, D. C. H.
, and Tong
S. -H.
, 2008, “On the Generation of Analytical Noncircular Multilobe Internal Pitch Curves
,” ASME J. Mech. Des.
0161-8458, 130
(9
), p. 092601
.17.
Yan
, J
, Yang
, D. C. H.
, and Tong
S. -H.
, 2009, “A New Gerotor Design Method With Switch Angle Assignability
,” ASME J. Mech. Des.
0161-8458, 131
(1
), p. 011006
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.