This paper derives formulas for evaluating the flowrate of gerotor pumps. The flowrate formulas are based on a deviation function, and the pitch and generating curves can be circular or noncircular. Two dimensionless parameters, the lobe noncircularity and the pitch noncircularity, are introduced so that gerotor performance can be analyzed systematically.

1.
Colbourne
,
J. R.
, 1974, “
The Geometry of Trochoid Envelopes and Their Application in Rotary Pumps
,”
Mech. Mach. Theory
0094-114X,
9
(
3–4
), pp.
421
435
.
2.
Litvin
,
F. L.
, and
Feng
,
P. -H.
, 1996, “
Computerized Design and Generation of Cycloidal Gearings
,”
Mech. Mach. Theory
0094-114X,
31
(
7
), pp.
891
911
.
3.
Shung
,
J. B.
, and
Pennock
,
G. R.
, 1994, “
Geometry for Trochoidal-Type Machines With Conjugate Envelopes
,”
Mech. Mach. Theory
0094-114X,
29
(
1
), pp.
25
42
.
4.
Colbourne
,
J. R.
, 1975, “
Gear Shape and Theoretical Flow Rate in Internal Gear Pumps
,”
Trans. Can. Soc. Mech. Eng.
0315-8977,
3
(
4
), pp.
215
223
.
5.
Beard
,
J. E.
,
Hall
,
A. S.
, and
Soedel
,
W.
, 1991, “
Comparison of Hypotrochoidal and Epitrochoidal Gerotors
,”
ASME J. Mech. Des.
0161-8458,
113
, pp.
133
141
.
6.
Beard
,
J. E.
,
Yannietll
,
D. W.
, and
Pennock
,
G. R.
, 1992, “
The Effects of the Generating Pin Size and Placement on the Curvature and Displacement of Epitrochoidal Gerotors
,”
Mech. Mach. Theory
0094-114X,
27
(
4
), pp.
373
389
.
7.
Adams
,
G. P.
, and
Beard
,
J. D.
, 1997, “
Comparison of Helical and Skewed Axis Gerotor Pumps
,”
Mech. Mach. Theory
0094-114X,
32
(
6
), pp.
729
742
.
8.
Adams
,
G. P.
, and
Beard
,
J. E.
, 1994, “
Gerotor Configurations With Non-Uniform Cross Sections
,”
Machine Elements and Machine Dynamics: Proceedings of the 23rd Biennial Mechanisms Conference
, Minneapolis, MN, Vol.
71
, pp.
283
289
.
9.
Chang
,
Y.
, and
Kim
,
J.
, 2007, “
Development of an Integrated System for the Automated Design of a Gerotor Oil Pump
,”
ASME J. Mech. Des.
0161-8458,
129
(
10
), pp.
1099
1105
.
10.
Hsieh
,
C. -F.
, and
Hwang
,
Y. -W.
, 2007, “
A Geometric Design for a Gerotor Pump With High Area Efficiency
,”
ASME J. Mech. Des.
0161-8458,
129
(
12
), pp.
1269
1377
.
11.
Hwang
,
Y. -W.
, and
Hsieh
,
C. -F.
, 2007, “
Geometric Design Using Hypotrochoid and Nonundercutting Conditions for an Internal Cycloidal Gear
,”
ASME J. Mech. Des.
0161-8458,
129
(
4
), pp.
413
420
.
12.
Tong
,
S. H.
, and
Yang
,
D. C. H.
, 2000, “
On the Generation of New Lobe Pumps for Higher Pumping Flowrate
,”
Mech. Mach. Theory
0094-114X,
35
(
7
), pp.
997
1012
.
13.
Yang
,
D. C. H.
, and
Tong
,
S. H.
, 2002, “
Specific Flowrate of Deviation-Function Based Lobe Pumps—Derivation and Analysis
,”
Mech. Mach. Theory
0094-114X,
37
(
10
), pp.
1025
1042
.
14.
Yang
,
D. C. H.
,
Tong
,
S. -H.
, and
Lin
,
J.
, 1999, “
Deviation-Function Based Pitch Curve Modification for Conjugate Pair Design
,”
ASME J. Mech. Des.
0161-8458,
121
(
4
), pp.
579
586
.
15.
Tong
,
S. -H.
,
Yan
,
J.
, and
Yang
,
D. C. H.
, 2009, “
Design of Deviation-Function Based Gerotors
,”
Mech. Mach. Theory
0094-114X,
44
(
8
), pp.
1595
1606
.
16.
Yan
,
J
,
Yang
,
D. C. H.
, and
Tong
S. -H.
, 2008, “
On the Generation of Analytical Noncircular Multilobe Internal Pitch Curves
,”
ASME J. Mech. Des.
0161-8458,
130
(
9
), p.
092601
.
17.
Yan
,
J
,
Yang
,
D. C. H.
, and
Tong
S. -H.
, 2009, “
A New Gerotor Design Method With Switch Angle Assignability
,”
ASME J. Mech. Des.
0161-8458,
131
(
1
), p.
011006
.
You do not currently have access to this content.