Reliability is an important engineering requirement for consistently delivering acceptable product performance through time. As time progresses, the product may fail due to time phenomena such as time-dependent operating conditions, component degradation, etc. The degradation of reliability with time may increase the lifecycle cost due to potential warranty costs, repairs, and loss of market share, affecting the sustainability of environmentally friendly products. In the design for lifecycle cost, we must account for product quality and time-dependent reliability. Quality is a measure of our confidence that the product conforms to specifications as it leaves the factory. Quality is time independent, and reliability is time dependent. This article presents a design methodology to determine the optimal design of time-dependent multiresponse systems by minimizing the cost during the life of the product. The conformance of multiple responses is treated in a series-system fashion. The lifecycle cost includes a production, an inspection, and an expected variable cost. All costs depend on quality and/or reliability. The key to our approach is the calculation of the so-called system cumulative probability of failure. For that, we use an equivalent time-invariant “composite” limit state and a niching genetic algorithm with lazy learning metamodeling. A two-mass vibratory system example and an automotive roller clutch example demonstrate the calculation of the cumulative probability of failure and the design for lifecycle cost.

1.
Zhao
,
Y.
,
Pandey
,
V.
,
Kim
,
H.
, and
Thurston
,
D.
, 2009, “
Varying Lifecycle Lengths Within a Portfolio for Product Take-Back
,”
Proceedings of the ASME International Design Engineering Conferences
, San Diego, CA, Paper No. DETC2009-87625.
2.
Mangun
,
D.
, and
Thurston
,
D. L.
, 2002, “
Incorporating Component Reuse, Remanufacture and Recycle Into Product Portfolio Design
,”
IEEE Trans. Eng. Manage.
0018-9391,
49
(
4
), pp.
479
490
.
3.
Geyer
,
R.
,
Van Wassenhove
,
L. N.
, and
Atasu
,
A.
, 2007, “
The Economics of Remanufacturing Under Limited Component Durability and Finite Product Life Cycles
,”
Manage. Sci.
0025-1909,
53
(
1
), pp.
88
100
.
4.
Srivastava
,
S. K.
, 2007, “
Green Supply-Chain Management: A State-of-the-Art Literature Review
,”
Int. J. Manage. Rev.
1468-2370,
9
(
1
), pp.
53
80
.
5.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 1999, “
A New Study on Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
121
(
4
), pp.
557
564
.
6.
Du
,
X.
,
Sudjianto
,
A.
, and
Huang
,
B. Q.
, 2005, “
Reliability-Based Design With a Mixture of Random and Interval Variables
,”
ASME J. Mech. Des.
0161-8458,
127
(
6
), pp.
1068
1076
.
7.
Liang
,
J.
,
Mourelatos
,
Z. P.
, and
Nikolaidis
,
E.
, 2007, “
A Single-Loop Approach for System Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
129
(
12
), pp.
1215
1224
.
8.
McDonald
,
M.
, and
Mahadevan
,
S.
, 2008, “
Design Optimization With System-Level Reliability Constraints
,”
ASME J. Mech. Des.
0161-8458,
130
(
2
), pp.
021403
.
9.
Du
,
X.
, 2008, “
Saddlepoint Approximation for Sequential Optimization and Reliability Analysis
,”
ASME J. Mech. Des.
0161-8458,
130
(
1
), pp.
011011
.
10.
Kuschel
,
N.
, and
Rackwitz
,
R.
, 2000, “
Optimal Design Under Time-Variant Reliability Constraints
,”
Struct. Safety
0167-4730,
22
(
2
), pp.
113
127
.
11.
Streicher
,
H.
, and
Rackwitz
,
R.
, 2004, “
Time-Variant Reliability-Oriented Structural Optimization and a Renewal Model for Life-Cycle Costing
,”
Probab. Eng. Mech.
0266-8920,
19
(
1–2
), pp.
171
183
.
12.
Savage
,
G. J.
, and
Carr
,
S. M.
, 2002, “
Interrelating Quality and Reliability in Engineering Systems
,”
Qual. Eng.
0898-2112,
14
(
1
), pp.
137
152
.
13.
Savage
,
G. J.
, and
Son
,
Y. K.
, 2009, “
Dependability-Based Design Optimization of Degrading Engineering Systems
,”
ASME J. Mech. Des.
0161-8458,
131
, p.
011002
.
14.
Andrieu-Renaud
,
C.
,
Sudret
,
B.
, and
Lemaire
,
M.
, 2004, “
The PHI2 Method: A Way to Compute Time-Variant Reliability
,”
Reliab. Eng. Syst. Saf.
0951-8320,
84
(
1
), pp.
75
86
.
15.
Monga
,
A.
, and
Zuo
,
M. J.
, 1998, “
Optimal System Design Considering Maintenance and Warranty
,”
Comput. Oper. Res.
0305-0548,
25
(
9
), pp.
691
705
.
16.
Wang
,
Z. L.
,
Du
,
X.
, and
Huang
,
H. Z.
, 2008, “
Reliability-Based Lifecycle Optimization With Maintenance Consideration
,”
14th ISSAT Conference on Reliability and Quality in Design
, Orlando, FL, Aug. 7–9.
17.
Wang
,
Z.
,
Huang
,
H. Z.
, and
Du
,
X.
, 2010, “
Optimal Design Accounting for Reliability, Maintenance, and Warranty
,”
ASME J. Mech. Des.
0161-8458,
132
(
1
), pp.
011007
.
18.
Rackwitz
,
R.
, 1998, “
Computational Techniques in Stationary and Non-Stationary Load Combination—A Review and Some Extensions
,”
J. Struct. Eng.
0733-9445,
25
(
1
), pp.
1
20
.
19.
Royset
,
J. O.
,
Der Kiureghian
,
A.
, and
Polak
,
E.
, 2006, “
Optimal Design With Probabilistic Objectives and Constraints
,”
J. Eng. Mech.
0733-9399,
132
(
1
), pp.
110
118
.
20.
Son
,
Y. K.
, and
Savage
,
G. J.
, 2007, “
Set Theoretic Formulation of Performance Reliability of Multiple Response Time-Variant Systems Due to Degradations in System Components
,”
Qual. Reliab. Eng. Int.
,
23
(
2
), pp.
171
188
.
21.
Chou
,
C. Y.
, and
Chen
,
C. H.
, 2001, “
On the Present Worth of Multivariate Quality Loss
,”
Int. J. Prod. Econ.
0925-5273,
70
, pp.
279
288
.
22.
Son
,
Y. K.
,
Chang
,
S. W.
, and
Savage
,
G. J.
, 2007, “
Economic-Based Design of Engineering Systems With Degrading Components Using Probabilistic Loss of Quality
,”
J. Mech. Sci. Technol.
1738-494X,
21
(
2
), pp.
225
234
.
23.
Frangopol
,
D. M.
, and
Maute
,
K.
, 2003, “
Life-Cycle Reliability-Based Optimization for Civil and Aerospace Structures
,”
Comput. Struct.
0045-7949,
81
, pp.
397
410
.
24.
Rackwitz
,
R.
, and
Fiessler
,
B.
, 1978, “
Structural Reliability Under Combined Random Load Sequences
,”
Comput. Struct.
0045-7949,
9
(
5
), pp.
489
494
.
25.
Zhao
,
Y.
, and
Ono
,
T.
, 1999, “
A General Procedure for First/Second-Order Reliability Method (FORM/SORM)
,”
Struct. Safety
0167-4730,
21
(
2
), pp.
95
112
.
26.
Cornell
,
C. A.
, 1967, “
Bounds on the Reliability of Structural Systems
,”
J. Struct. Div.
0044-8001,
93
(
ST1
), pp.
171
200
.
27.
Ditlevsen
,
O.
, 1979, “
Narrow Reliability Bounds for Structural Systems
,”
J. Struct. Mech.
0360-1218,
7
(
4
), pp.
453
472
.
28.
Bucher
,
C. G.
, 1988, “
Adaptive Sampling—An Iterative Fast Monte Carlo Procedure
,”
Struct. Safety
0167-4730,
5
, pp.
119
126
.
29.
Cazuguel
,
M.
,
Renaud
,
C.
, and
Cognard
,
J. Y.
, 2006, “
Time-Variant Reliability of Nonlinear Structures: Application to a Representative Part of a Plate Floor
,”
Qual. Reliab. Eng. Int.
0748-8017,
22
, pp.
101
118
.
30.
Hagen
,
O.
, and
Tvedt
,
L.
, 1991, “
Vector Process Out-Crossing as Parallel System Sensitivity Measure
,”
J. Eng. Mech.
0733-9399,
117
(
10
), pp.
2201
2220
.
31.
Ditlevsen
,
O.
, and
Madsen
,
H. O.
, 1996,
Structural Reliability Methods
,
Wiley
,
New York
.
32.
Shinozuka
,
M.
, 1964, “
Probability of Failure Under Random Loading
,”
J. Eng. Mech.
0733-9399,
90
, pp.
147
171
.
33.
Engelung
,
S.
,
Rackwitz
,
R.
, and
Lange
,
C.
, 1995, “
Approximations of First Passage Times for Differentiable Processes Based on Higher Order Threshold Crossings
,”
Probab. Eng. Mech.
0266-8920,
10
(
1
), pp.
53
60
.
34.
Schueller
,
G. I.
, 1997, “
A State-of-the-Art Report on Computational Stochastic Mechanics
,”
Probab. Eng. Mech.
0266-8920,
12
(
4
), pp.
197
321
.
35.
Sudret
,
B.
, and
Der Kiureghian
,
A.
, 2000, “
Stochastic Finite Element Methods and Reliability. A State-of-the-Art Report
,” University of California, Report No. UCB/SEMM-2000/08.
36.
Aktas
,
E.
,
Moses
,
F.
, and
Ghosn
,
M.
, 2001, “
Cost and Safety Optimization of Structural Design Specifications
,”
Reliab. Eng. Syst. Saf.
0951-8320,
73
, pp.
205
212
.
37.
Shir
,
O. M.
, 2004, “
Niching in Evolution Strategies
,” MS thesis, Leiden University, Netherlands.
38.
Li
,
J.
, and
Mourelatos
,
Z. P.
, 2009, “
Time-Dependent Reliability Estimation for Dynamic Problems Using a Niching Genetic Algorithm
,”
ASME J. Mech. Des.
0161-8458,
131
(
7
), p.
071009
.
39.
Aha
,
D. W.
, 1997, “
Editorial - Lazy Learning
,”
Artif. Intell. Rev.
0269-2821,
11
(
1–5
), pp.
1
6
.
40.
Atkeson
,
C. G.
,
Moore
,
A. W.
, and
Schaal
,
S.
, 1997, “
Locally Weighted Learning
,”
Artif. Intell. Rev.
0269-2821,
11
(
1–5
), pp.
11
73
.
41.
Birattari
,
M.
,
Bontempi
,
G.
, and
Bersini
,
H.
, 1999, “
Lazy Learning Meets the Recursive Least-Squares Algorithm
,”
Advances in Neural Information Processing Systems 11
,
M. S.
Kearns
,
S. A.
Solla
, and
D. A.
Cohn
, eds.,
MIT
,
Cambridge, MA
, pp.
375
381
.
42.
Goldberg
,
D. E.
, and
Richardson
,
J.
, 1987, “
Genetic Algorithms With Sharing for Multimodal Function Optimization
,”
Proceedings of the Second International Conference on Genetic Algorithms on Genetic Algorithms and Their Application
, pp.
41
49
.
43.
Singh
,
A.
,
Mourelatos
,
Z. P.
, and
Li
,
J.
, 2009, “
Design for Lifecycle Cost Using Time-Dependent Reliability
,”
Proceedings ASME International Design Engineering Conferences
, San Diego, CA, Paper No. DETC2009-86587.
44.
Xue
,
W.
, and
Pyle
,
R.
, 2004, “
Optimal Design of Roller One Way Clutch for Starter Drives
,” SAE Paper No. 2004-01-1151.
45.
Choi
,
H. R.
,
Park
,
M.
, and
Salisbury
,
E.
, 2000, “
Optimal Tolerance Allocation With Loss Functions
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
, pp.
529
535
.
You do not currently have access to this content.