A new kinematic design methodology is presented for optimization of spherical serial mechanisms. First, a new index, combining global manipulability and the uniformity of manipulability over the workspace, is presented to improve the synthesis results. This method integrates multiple criteria (workspace size, the new manipulability index, and mechanism size) linearly in one objective function. All these criteria are optimized simultaneously to lead to a solution with better performance. By changing the priorities of each criterion, different sets of desirable kinematic performance can be expressed. An adaptation of the method using a multiobjective Pareto front is also illustrated. The optimization result for a spherical bevel-geared mechanism using a genetic algorithm demonstrated that the proposed method effectively improves the quality of the optimum solution and provides insight into the workings of the mechanism. In addition, this flexible and adaptable methodology also presents a general optimization approach for linkage synthesis.

1.
Zhang
,
X.
, and
Nelson
,
C. A.
, 2008, “
Kinematic Analysis and Optimization of a Novel Robot for Surgical Tool Manipulation
,”
ASME J. Med. Devices
1932-6181,
2
(
2
), p.
021003
.
2.
Lum
,
M. J. H.
,
Rosen
,
J.
,
Sinanan
,
M. N.
, and
Hannaford
,
B.
, 2006, “
Optimization of a Spherical Mechanism for a Minimally Invasive Surgical Robot: Theoretical and Experimental Approaches
,”
IEEE Trans. Biomed. Eng.
0018-9294,
53
(
7
), pp.
1440
1445
.
3.
Siebler
,
S. R.
,
Nelson
,
C. A.
, and
Hejkal
,
T.
, 2009, “
Design and Development of a Free-Standing 4-DOF Infant Surgical Table
,”
ASME
Paper No. DETC2009-86790.
4.
Turner
,
M. L.
,
Perkins
,
D. A.
,
Murray
,
A. P.
, and
Larochelle
,
P. M.
, 2005, “
Systematic Process for Constructing Spherical Four-Bar Mechanisms
,”
ASME International Mechanical Engineering Congress and Exposition
, Orlando, FL, Nov. 11–15, pp.
80058.1
80058.7
.
5.
Hamlin
,
G. J.
, and
Sanderson
,
A. C.
, 1997, “
TETROBOT: A Modular Approach to Parallel Robotics
,”
IEEE Rob. Autom. Mag.
1070-9932,
4
(
1
), pp.
42
50
.
6.
Furlong
,
T. J.
,
Vance
,
J. M.
, and
Larochelle
,
P. M.
, 1999, “
Spherical Mechanical Synthesis in Virtual Reality
,”
ASME J. Mech. Des.
0161-8458,
121
(
4
), pp.
515
520
.
7.
Belfiore
,
N. P.
, 1993, “
An Atlas of Remote Actuated Bevel Gear Wrist Mechanisms of Up to Nine Links
,”
Int. J. Robot. Res.
0278-3649,
12
(
5
), pp.
448
459
.
8.
Liu
,
X.
,
Wang
,
J.
,
Wang
,
Q.
, and
Li
,
T.
, 2004, “
Workspace and Rotational Capability Analysis of a Spatial 3-DOF Parallel Manipulator
,”
Prog. Nat. Sci.
1002-0071,
14
(
11
), pp.
996
1003
.
9.
Kosinska
,
A.
,
Galicki
,
M.
, and
Kedzior
,
K.
, 2003, “
Designing and Optimization of Parameters of Delta-4 Parallel Manipulator for a Given Workspace
,”
J. Rob. Syst.
0741-2223,
20
(
9
), pp.
539
548
.
10.
Zhao
,
J. S.
,
Zhang
,
S. L.
,
Dong
,
J. X.
,
Feng
,
Z. J.
, and
Zhou
,
K.
, 2007, “
Optimizing the Kinematic Chains for a Spatial Parallel Manipulator via Searching the Desired Dexterous Workspace
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
23
(
1
), pp.
38
46
.
11.
Callegari
,
M.
,
Cammarata
,
A.
,
Gabrielli
,
A.
,
Ruggiu
,
M.
, and
Sinatra
,
R.
, 2009, “
Analysis and Design of a Spherical Micromechanism With Flexure Hinges
,”
ASME J. Mech. Des.
0161-8458,
131
(
5
), p.
051003
.
12.
Li
,
T.
, and
Payandeh
,
S.
, 2002, “
Design of Spherical Parallel Mechanisms for Application to Laparoscopic Surgery
,”
Robotica
0263-5747,
20
(
02
), pp.
133
138
.
13.
Wu
,
C.
,
Liu
,
X. J.
,
Wang
,
L.
, and
Wang
,
J.
, 2010, “
Optimal Design of Spherical 5R Parallel Manipulators Considering the Motion/Force Transmissibility
,”
ASME J. Mech. Des.
0161-8458,
132
(
3
), p.
031002
.
14.
Faraz
,
A.
, and
Payandeh
,
S.
, 2000,
Engineering Approaches to Mechanical and Robotic Design for Minimally Invasive Surgeries
,
Kluwer Academic
,
Norwell, MA
.
15.
Pham
,
H. H.
, and
Chen
,
I. M.
, 2003, “
Optimal Synthesis for Workspace and Manipulability of Parallel Flexure Mechanism
,”
11th World Congress in Mechanism and Machine Science
, Tianjin, China, Aug. 18–21, Vol.
4
, pp.
2069
2073
.
16.
Kurtz
,
R.
, and
Hayward
,
V.
, 1992, “
Multiple-Goal Kinematic Optimization of a Parallel Spherical Mechanism With Actuator Redundancy
,”
IEEE Trans. Rob. Autom.
1042-296X,
8
(
5
), pp.
644
651
.
17.
Altuzarra
,
O.
,
Hernandez
,
A.
,
Salgado
,
O.
, and
Angeles
,
J.
, 2009, “
Multiobjective Optimum Design of a Symmetric Parallel Schönflies-Motion Generator
,”
ASME J. Mech. Des.
0161-8458,
131
(
3
), pp.
031002
.
18.
Liu
,
X.
, and
Wang
,
J.
, 2007, “
A New Methodology for Optimal Kinematic Design of Parallel Mechanisms
,”
Mech. Mach. Theory
0094-114X,
42
(
9
), pp.
1210
1224
.
19.
Kocabas
,
H.
, 2009, “
Gripper Design With Spherical Parallelogram Mechanism
,”
ASME J. Mech. Des.
0161-8458,
131
(
7
), p.
075001
.
20.
Craig
,
J. J.
, 2004,
Introduction to Robotics Mechanics & Control
,
Stanford University Press
,
Stanford, CA
.
21.
Liu
,
X.
,
Wang
,
J.
, and
Gao
,
F.
, 2003, “
Workspace Atlases for the Design of Spherical 3-DOF Serial Wrists
,”
J. Intell. Robotic Syst.
0921-0296,
36
(
4
), pp.
389
405
.
22.
Yoshikawa
,
T.
, 1985, “
Manipulability of Robotic Mechanism
,”
Int. J. Robot. Res.
0278-3649,
4
(
2
), pp.
3
9
.
23.
Asada
,
H.
, and
Cro Crantio
,
J. A.
, 1985, “
Kinematic and Static Characterization of Wrist Joints and Their Optimal Design
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, St. Louis, MO, pp.
244
250
.
24.
Zhang
,
X.
,
Oleynikov
,
D.
, and
Nelson
,
C. A.
, 2009, “
Portable Tool Positioning Robot for Telesurgery
,”
Stud. Health Technol. Inform.
0926-9630,
142
, pp.
438
443
.
25.
DeJong
,
K. A.
, 1975,
An Analysis of the Behavior of a Class of Genetic Adaptive Systems
, Ph.D. thesis, University of Michigan, Ann Arbor MI.
26.
Grefenstette
,
J. J.
, 1986, “
Optimization of Control Parameters for Genetic Algorithms
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
16
(
1
), pp.
122
128
.
27.
Konak
,
A.
,
Coit
,
D. W.
, and
Smith
,
A. E.
, 2006, “
Multi-Objective Optimization Using Genetic Algorithms: A Tutorial
,”
Reliab. Eng. Syst. Safety
0951-8320,
91
(
9
), pp.
992
1007
.
You do not currently have access to this content.