Development of a family of products that satisfies different market niches introduces significant challenges to today’s manufacturing industries—from development time to aftermarket services. A product family with a common platform paradigm offers a powerful solution to these daunting challenges. This paper presents a new approach, the Comprehensive Product Platform Planning (CP3) framework, to design optimal product platforms. The CP3 framework formulates a generalized mathematical model for the complex platform planning process. This model (i) is independent of the solution strategy, (ii) allows the formation of sub-families of products, (iii) allows the simultaneous identification of platform design variables and the determination of the corresponding variable values, and (iv) seeks to avoid traditional distinctions between modular and scalable product families from the optimization standpoint. The CP3 model yields a mixed integer nonlinear programming problem, which is carefully reformulated to allow for the application of continuous optimization using a novel Platform Segregating Mapping Function (PSMF). The PSMF can be employed using any standard global optimization methodology (hence not restrictive); particle swarm optimization has been used in this paper. A preliminary cost function is developed to represent the cost of a product family as a function of the number of products manufactured and the commonality among these products. The proposed CP3 framework is successfully implemented on a family of universal electric motors. Key observations are made regarding the sensitivity of the optimized product platform to the intended production volume.

References

1.
Meyer
,
M. H.
, and
Lopez
,
L.
, 1995, “
Technology Strategy in a Software Products Company
,”
J. Prod. Innovation Manage.
,
12
(
4
), pp.
294
306
.
2.
Meyer
,
M. H.
, and
Lehnerd
,
A. P.
,
The Power of Product Platforms: Building Value and Cost Leadership
(
The Free Press
,
New York
, 1997).
3.
Robertson
,
D.
, and
Ulrich
,
K.
, 1998. “
Planning Product Platforms
,”
Sloan Manage. Rev.
,
39
(
4
), pp.
19
31
.
4.
Simpson
,
T. W.
,
Siddique
,
Z.
, and
Jiao
,
R. J.
,
Product Platform and Product Family Design: Methods and Applications
(
Springer
,
New York
, 2006).
5.
Michalek
,
J. J.
,
Ceryan
,
O.
,
Papalambros
,
P. Y.
, and
Koren
,
Y.
, 2006 “
Balancing Marketing and Manufacturing Objectives in Product Line Design
,”
ASME J. Mech. Des.
,
128
(
6
), pp.
1196
1204
.
6.
Simpson
,
T. W.
,
Chen
,
W.
,
Allen
,
J. K.
, and
Mistree
,
F.
, 1996, “
Conceptual Design of a Family of Products Through the Use of the Robust Concept Exploration Method
,” In 6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Report No. AIAA-96-4161-CP,
AIAA
, pp.
1535
1545
.
7.
Simpson
,
T. W.
, 2004, “
Product Platform Design and Customization: Status and Promise
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
18
(
1
), pp.
3
20
.
8.
Uzumeri
,
M.
, and
Sanderson
,
S. W.
, 1995, “
A Framework for Model and Product Family Competition
,”
Res. Policy
,
24
(
4
), pp.
583
607
.
9.
Sanderson
,
S. W.
, and
Uzumeri
,
M.
, 1997.
Managing Product Families
IRWIN
,
USA
.
10.
Sabbagh
,
K.
,
Twenty-First Century Jet: The Making and Marketing of Boeing 777
(
Scribner
, 1996).
11.
Kobe
,
G.
, 1997, “
Platforms—Gm’s Seven Platform Global Strategy
,”
Automot. Ind.
,
177
(
50
).
12.
Dai
,
Z.
, and
Scott
,
M. J.
, 2006, “
Effective Product Family Design Using Preference Aggregation
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
659
667
.
13.
Simpson
,
T. W.
, 2006, “
Product Platform and Product Family Design: Methods and Applications
,” Springer, New York, ch. Methods for Optimizing Product Platforms and Product Families: Overview and Classification, pp.
133
156
14.
Chowdhury
,
S.
,
Messac
,
A.
, and
Khire
,
R.
, 2010, “
Developing a Non-Gradient Based Mixed-Discrete Optimization Approach for Comprehensive Product Platform Planning (CP3)
,”
13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference
,
AIAA
.
15.
Khire
,
R. A.
,
Messac
,
A.
, and
Simpson
,
T. W.
, 2006, “
Optimal Design of Product Families Using Selection-Integrated Optimization (sio) Methodology
,” 11th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Report no. AIAA 2006-6924,
AIAA
.
16.
Khire
,
R.
, and
Messac
,
A.
, 2008, “
Selection-Integrated Optimization (sio) Methodology for Optimal Design of Adaptive Systems
,”
ASME J. Mech. Des.
,
130
(
10
),
101401
.
17.
Khire
,
R. A.
, 2006, “
Selection-Integrated Optimization (sio) Methodology for Adaptive Systems and Product Family Optimization
,” Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY.
18.
Khajavirad
,
A.
,
Michalek
,
J. J.
, and
Simpson
,
T. W.
, 2009, “
An Efficient Decomposed Multiobjective Genetic Algorithm for Solving the Joint Product Platform Selection and Product Family Design Problem With Generalized Commonality
,”
Struct. Multidiscip. Optim.
,
39
(
2
), pp.
187
201
.
19.
Chen
,
C.
, and
Wang
,
L. A.
, 2008, “
Modified Genetic Algorithm for Product Family Optimization With Platform Specified by Information Theoretical Approach
,”
J. Shanghai Jiaotong Univ.
,
13
(
3
), pp.
304
311
.
20.
Messac
,
A.
,
Martinez
,
M. P.
, and
Simpson
,
T. W.
, 2002, “
Effective Product Family Design Using Physical Programming
,”
Eng. Optimiz.
,
124
(
3
), pp.
245
261
.
21.
Messac
,
A.
,
Martinez
,
M. P.
, and
Simpson
,
T. W.
, 2002, “
Introduction of a Product Family Penalty Function Using Physical Programming
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
164
172
.
22.
Rangavajhala
,
S.
,
Khire
,
R.
, and
Messac
,
A.
, 2007, “
Decision Making in Product Family Optimization Under Uncertainty
,”
48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Report No. AIAA 2007-1894,
AIAA
.
23.
Rai
,
R.
, and
Allada
,
V.
, 2007, “
Modular Product Family Design: An Agent Based Optimization Technique
,”
Int. J. Prod. Res.
,
41
(
17
), pp.
4075
4098
.
24.
Fujita
,
K.
, and
Yoshida
,
H.
, 2001, “
Product Variety Optimization: Simultaneous Optimization of Module Combination and Module Attributes
,”
ASME 2001 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Report No. DETC2001/DAC-21058.
25.
Fujita
,
K.
, and
Yoshida
,
H.
, 2004, “
Product Variety Optimization Simultaneously Designing Module Combination and Module Attributes
,”
Concurr. Eng.
,
12
(
2
), pp.
105
118
.
26.
Stone
,
R. B.
,
Wood
,
K. L.
, and
Crawford
,
R. H.
, 2000, “
A Heuristic Method to Identify Modules From a Functional Description of a Product
,”
Des. Stud.
,
21
(
1
), pp.
5
31
.
27.
Dahmus
,
J. B.
,
Gonzalez-Zugasti
,
J. P.
, and
Otto
,
K. N.
, 2001, “
Modular Product Architecture
,”
Des. Stud.
,
22
, pp.
409
424
.
28.
Guo
,
F.
, and
Gershenson
,
J. K.
, 2003, “
Comparison of Modular Measurement Methods Based on Consistency Analysis and Sensitivity Analysis
,”
ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Report No. DETC2003/DTM-48634.
29.
Jose
,
A.
, and
Tollenaere
,
M.
, 2005, “
Modular and Platform Methods for Product Family Design: Literature Analysis
,”
J. Intell. Manuf.
,
16
, pp.
371
390
.
30.
Kalligeros
,
K.
,
de Weck
,
O.
, and
de Neufville
,
R.
, 2006, “
Platform Identification Using Design Structure Matrices
,”
Sixteenth Annual International Symposium of the International Council On Systems Engineering (INCOSE)
, INCOSE.
31.
Sharon
,
A.
,
Dori
,
D.
, and
de Weck
,
O.
, 2009, “
Model-Based Design Structure Matrix: Deriving a dsm From an Object-Process Model
,”
Second International Symposium on Engineering Systems
CESUN and MIT ESD
32.
Yu
,
T. L.
,
Yassine
,
A. A.
, and
Goldberg
,
D. E.
, 2007, “
An Information Theoretic Method for Developing Modular Architectures Using Genetic Algorithms
,”
Res. Eng. Des.
,
18
, pp.
91
109
.
34.
CMU and IBM, 2010, “
CMU-IBM Cyber-Infrastructure for MINLP
,” http://www.minlp.org/index.phphttp://www.minlp.org/index.php.
35.
Kennedy
,
J.
, and
Eberhart
,
R. C.
, 1995, “
Particle Swarm Optimization
,”
IEEE International Conference on Neural Networks
, no.
IV
,
IEEE
, pp.
1942
1948
.
36.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
, 2002, “
A Fast and Elitist Multi-Objective Genetic Algorithm: Nsga-ii
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
37.
Chowdhury
,
S.
, and
Dulikravich
,
G. S.
, 2010, “
Improvements to Single-Objective Constrained Predator-Prey Evolutionary Optimization Algorithm
,”
Struct. Multidiscip. Optim.
,
41
(
4
), pp.
541
554
.
38.
Khajavirad
,
A.
, and
Michalek
,
J. J.
, 2008, “
A Decomposed Gradient-Based Approach for Generalized Platform Selection and Variant Design in Product Family Optimization
,”
ASME J. Mech. Des.
130
,
071101
.
39.
Park
,
J.
, and
Simpson
,
T. W.
, 2005, “
Development of a Production Cost Estimation Framework to Support Product Family Design
,”
Int. J. Prod. Res.
,
43
(
4
), pp.
731
772
.
40.
Chowdhury
,
S.
,
Messac
,
A.
, and
Khire
,
R.
, 2010, “
Comprehensive Product Platform Planning (cp3) Framework: Presenting a Generalized Product Family Model
,”
51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
AIAA
, Report No. AIAA 2010-2837.
41.
de Weck
,
O.
,
Suh
,
E.
, and
Chang
,
D.
, 2003, “
Product Family and Platform Portfolio Optimization
,”
ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
ASME
, Report No. DETC03/DAC-48721.
42.
Messac
,
A.
, 1996, “
Physical Programming: Effecrtive Optimization for Computational Design
,”
AIAA J.
,
34
(
1
), pp.
149
158
.
43.
Zitzler
,
E.
,
Laumanns
,
M.
, and
Bleuler
,
S.
, 2004, “
Metaheuristics for Multiobjective Optimisation
,”
A Tutorial on Evolutionary Multiobjective Optimization
Springer
,
New York
, pp.
3
37
.
44.
Price
,
K.
,
Storn
,
R. M.
, and
Lampinen
,
J. A.
, 2005,
Differential Evolution: A Practical Approach to Global Optimization
1st ed.,
Springer
,
New York
.
45.
Colaco
,
M. J.
,
Orlande
,
H. R. B.
, and
Dulikravich
,
G. S.
, 2006, “
Inverse and Optimization Problems in Heat Transfer
,”
Journal of the Brazilian J. Braz. Soc. Mech. Sci. Eng.
,
28
(
1
).
46.
Chapman
,
S. J.
, 2002,
Electric Machinery and Power System Fundamentals
,
McGraw-Hill
,
New York
.
47.
Simpson
,
T. W.
,
Maier
,
J. R. A.
, and
Mistree
,
F.
, 2001, “
Product Platform Design: Method and Application
,”
Res. Eng. Des.
,
13
(
1
), pp.
2
22
.
You do not currently have access to this content.