We provide an introduction and state of the art overview of integrated layout design of multicomponent systems. We review several packing optimization and overlap detection strategies, some tree-based methods, such as octrees and spheretrees, and a finite circle method (FCM) proposed to favor gradient-based optimization algorithms. Integrated layout design techniques for simultaneous packing and structure topology optimization of multicomponent systems are reviewed; two typical approaches for system stiffness maximization are reviewed and compared in detail. Design of multicomponent systems under inertia forces is presented using polynomial interpolation models; constraints to the centroid position, moment of inertia, and volume fraction are included. Applications to piezoelectric multi-actuated microtools and integrated layout design of bridge systems are presented. Finally, the effectiveness of the FCM, applications to 3D problems, and local optimum phenomena are discussed.

References

1.
Carbonari
,
R. C.
,
Silva
,
E. C. N.
, and
Paulino
,
G. H.
, 2009, “
Multi-Actuated Functionally Graded Piezoelectric Micro-Tools Design: A Multiphysics Topology Optimization Approach
,”
Int.J. Numer. Methods Eng.
,
77
(
3
), pp.
301
336
.
2.
Lyu
,
N.
, and
Saitou
,
K.
, 2005, “
Decomposition-Based Assembly Synthesis of a Three-Dimensional Body-in-White Model for Structural Stiffness
,”
ASME J. Mech. Des.
,
127
(
1
), pp.
34
48
.
3.
Chickermane
,
H.
, and
Gea
,
H. C.
, 1997, “
Design of Multi-Component Structure Systems for Optimal Layout Topology and Joint Locations
,”
Eng. Comput.
,
13
(
4
), pp.
235
243
.
4.
Cagan
,
J.
,
Shimada
,
K.
, and
Yin
,
S.
, 2002, “
A Survey of Computational Approaches to Three-Dimensional Layout Optimization
,”
Comput.-Aided Des.
,
34
(
8
), pp.
597
611
.
5.
Blouin
,
V. Y.
,
Miao
,
Y.
,
Zhou
,
X.
, and
Fadel
,
G. M.
, 2004, “
An Assessment of Configuration Design Methodologies
,”
10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, New York.
6.
Aladahalli
,
C.
,
Cagan
,
J.
, and
Shimada
,
K.
, 2007, “
Objective Function Effect Based Pattern Search—Theoretical Framework Inspired by 3D Component Layout
,”
ASME J. Mech. Des.
,
129
(
3
), pp.
243
254
.
7.
Zhang
,
B.
,
Teng
,
H. F.
, and
Shi
,
Y. J.
, 2008, “
Layout Optimization of Satellite Module Using Soft Computing Techniques
,”
Appl. Soft Comput.
,
8
(
1
), pp.
507
521
.
8.
Fujita
,
K.
,
Akagi
,
S.
, and
Hase
,
H.
, 1991, “
Hybrid Approaches to Plant Layout Design Using Constraint Directed Search and an Optimization Technique
,”
Proceedings of 17th ASME Design Automation Conference
, Vol.
1
, pp.
131
138
.
9.
Landon
,
M. D.
, and
Balling
,
R. J.
, 1994, “
Optimal Packaging of Complex Parametric Solids According to Mass Property Criteria
,”
ASME J. Mech. Des.
,
116
, pp.
375
381
.
10.
De Bont
,
F. M. J.
,
Aarts
,
E. H. L.
,
Meehan
,
P.
, and
O’Brien
,
C. G.
, 1988, “
Placement of Shapeable Blocks
,”
Philips J. Res.
,
43
, pp.
1
22
.
11.
Pál
,
L.
, 2006, “
A Genetic Algorithm for the Two-Dimensional Single Large Object Placement Problem
,”
Proceedings of 3rd Romanian-Hungarian Joint Symposium on Applied Computational Intelligence
.
12.
Huang
,
W. Q.
,
Chen
,
D. B.
, and
Xu
,
R. C.
, 2007, “
A New Heuristic Algorithm for Rectangle Packing
,”
Comput. Oper. Res.
,
34
, pp.
3270
3280
.
13.
Clautiaux
,
F.
,
Carlier
,
J.
, and
Moukrim
,
A.
, 2007, “
A New Exact Method for the Two-Dimensional Bin-Packing Problem With Fixed Orientation
,”
Oper. Res. Lett.
,
35
, pp.
357
364
.
14.
Miyazawa
,
F. K.
, and
Wakabayashi
,
Y.
, 2007, “
Two- and Three-Dimensional Parametric Packing
,”
Comput. Oper. Res.
,
34
, pp.
2589
2603
.
15.
Meagher
,
D.
, 1982, “
Geometric Modeling Using Octree Encoding
,”
Comput. Graph. Image Process.
,
19
(
2
), pp.
129
147
.
16.
Samet
,
H.
, 1989,
Spatial Data Structures: Quadtree, Octree and Other Hierarchical Methods
,
Addison-Wesley
,
Reading, MA
.
17.
Moore
,
A.
, 2002, “
The Circle Tree—Hierarchical Structure for Efficient Storage, Access and Multi-Scale Representation of Spatial Data
,” SIRC 2002, Dunedin, New Zealand.
18.
Hubbard
,
P. M.
, 1993, “
Interactive Collision Detection
,”
Proceedings of IEEE Symposium on Research Frontiers in Virtual Reality
,
San Jose, CA
.
19.
Quinlan
,
S.
, 1994, “
Efficient Distance Computation Between Non-Convex Objects
,”
Proceedings of International Conference on Robotics and Automation
,
San Jose, CA
, pp.
3324
3329
.
20.
Cameron
,
S.
, 1991, “
Approximation Hierarchies and s-Bounds
,”
Proceedings Symposium on Solid Modeling Foundations and CAD/CAM Applications
,
Austin, TX
, pp.
129
137
.
21.
Cagan
,
J.
,
Degentesh
,
D.
, and
Yin
,
S.
, 1998, “
A Simulated Annealing-Based Algorithm Using Hierarchical Models for General Three-Dimensional Component Layout
,”
Comput. Aided Des.
,
30
, pp.
781
790
.
22.
Lin
,
M.
, and
Gottschalk
,
S.
, 1998, “
Collision Detection Between Geometric Models: A Survey
,”
Proceeding of IMA Conference on Mathematics of Surfaces
.
23.
Zhang
,
W. H.
, and
Zhang
,
Q.
, 2009, “
Finite-Circle Method for Component Approximation and Packing Design Optimization
,”
Eng. Optimiz.
,
41
(
10
), pp.
971
987
.
24.
Svanberg
,
K.
, 1995, “
A Globally Convergent Version of MMA Without Linesearch
,”
First World Congress of Structural and Multidisciplinary Optimization
,
Pergamon
,
New York
, pp.
9
16
.
25.
Radovcic
,
Y.
, and
Remouchamps
,
A.
, 2001, “
BOSS QUATTRO: an open system for parametric design
,”
Struct. Multidiscip. Optim.
,
23
(
2
), pp.
140
152
.
26.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 2003,
Topology Optimization: Theory, Method and Application
,
Springer
,
Berlin/Heidelberg/New York
.
27.
Allaire
,
G.
,
Jouve
,
F.
, and
Maillot
,
H.
, 2004, “
Topology Optimization for Minimum Stress Design With the Homogenization Method
,”
Struct. Multidiscip. Optim.
,
28
(
2–3
), pp.
87
98
.
28.
Bendsøe
,
M. P.
, 1989, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Multidiscip. Optim.
,
1
(
4
), pp.
193
202
.
29.
Zhou
,
M.
, and
Rozvany
,
G. I. N.
, 1991, “
The COC Algorithm, Part II: Topological, Geometry and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
89
(
1–3
), pp.
309
336
.
30.
Stolpe
,
M.
, and
Svanberg
,
K.
, 2001, “
An Alternative Interpolation Scheme for Minimum Compliance Topology Optimization
,”
Struct. Multidiscip. Optim.
,
22
(
2
), pp.
116
124
.
31.
Johanson
,
R.
,
Papalambros
,
P.
, and
Kikuchi
,
N.
, 1994, “
Simultaneous Topology and Material Microstructure Design
” (Adv. Struct. Optim.),
Proceedings of the Second World Conference on Computational Structures Technology Part 2 (of 4)
, Athens, Greece, August 30-September 1, pp.
143
149
.
32.
Jiang
,
T.
, and
Chirehdast
,
M.
, 1997, “
A Systems Approach to Structural Topology Optimization: Designing Optimal Connections
,”
ASME J. Mech. Des.
,
119
(
1
), pp.
40
47
.
33.
Chickermane
,
H.
, and
Gea
,
H. C.
, 1997, “
Design of Multi-Component Structure Systems for Optimal Layout Topology and Joint Locations
,”
Eng. Comput.
,
13
(
4
), pp.
235
243
.
34.
Chickermane
,
H.
,
Gea
,
H. C.
,
Yang
,
R. J.
, and
Chuang
,
C. H.
, 1999, “
Optimal Fastener Pattern Design Considering Bearing Loads
,”
Struct. Multidiscip. Optim.
,
17
(
2–3
), pp.
140
146
.
35.
Li
,
Q.
,
Steven
,
G. P.
, and
Xie
,
Y. M.
, 2001, “
Evolutionary Structural Optimization for Connection Topology Design of Multi-Component Systems
,”
Eng. Comput.
,
18
(
3–4
), pp.
460
479
.
36.
Qian
,
Z. Y.
, and
Ananthasuresh
G. K.
, 2004, “
Optimal Embedding of Rigid Objects in the Topology Design of Structures
,”
Mech. Based Des. Struct. Mach.
,
32
(
2
), pp.
165
193
.
37.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
, 2001, “
Topology Optimization of Compliant Mechanisms With Multiple Materials Using a Peak Function Material Interpolation Scheme
,”
Struct. Multidiscip. Optim.
,
23
(
1
), pp.
49
62
.
38.
Zhu
,
J. H.
,
Zhang
,
W. H.
, and
Beckers
,
P.
, 2008, “
Simultaneous Design of Components Layout and Supporting Structures Using Coupled Shape and Topology Optimization
,”
Struct. Multidiscip. Optim.
,
36
(
1
), pp.
29
41
.
39.
Zhu
,
J. H.
,
Zhang
,
W. H.
, and
Beckers
,
P.
, 2009, “
Integrated Layout Design of Multi-Component System
,”
Int. J. Numer. Methods Eng.
,
78
(
6
), pp.
631
651
.
40.
Zhu
,
J. H.
,
Zhang
,
W. H.
, and
Beckers
,
P.
, 2010, “
On the Multi-Component Layout Design With Inertial Force
,”
J. Comput. Appl. Math.
,
234
(
7
), pp.
2222
2230
.
41.
Zhu
,
J. H.
, and
Zhang
,
W. H.
, 2010, “
Integrated Layout Design of Supports and Structures
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
9–12
), pp.
557
569
.
42.
Zhu
,
J. H.
, 2008, “
Integrated Layout Design of Multi-Component Systems
,” Ph.D. thesis, University of Liege, Belgium.
43.
Zhu
,
J. H.
,
Zhang
,
W. H.
, and
Xia
,
L.
, 2010, “
Improved Computational Efficiency for Integrated Layout Design
,”
3rd International Conference on Multidisciplinary Design Optimization and Applications
, June 21–23, Paris, France.
44.
Neves
,
M. M.
,
Rodrigues
,
H.
, and
Guedes
,
J. M.
, 1995, “
Generalized Topology Design of Structures With a Buckling Load Criterion
,”
Struct. Optim.
10
(
2
), pp.
71
78
.
45.
Pedersen
,
N. L.
, 2000, “
Maximization of Eigenvalues Using Topology Optimization
,”
Struct. Multidiscip. Optim.
,
20
(
1
), pp.
2
11
.
46.
Bruyneel
,
M.
, and
Duysinx
,
P.
, 2004, “
Note on Topology Optimization of Continuum Structures Including Self-Weight
,”
Struct. Multidiscip. Optim.
,
29
(
4
), pp.
245
256
.
47.
Carbonari
,
R. C.
,
Silva
,
E. C. N.
, and
Nishiwaki
,
S.
, 2005, “
Design of Piezoelectric Multi-Actuated Microtools Using Topology Optimization
,”
Smart Mater. Struct.
14
(
6
), pp.
1431
1447
.
48.
Carbonari
,
R. C.
,
Silva
,
E. C. N.
, and
Nishiwaki
,
S.
, 2007, “
Optimum Placement of Piezoelectric Material in Piezoactuator Design
,”
Smart Mater. Struct.
16
(
1
), pp.
207
220
.
49.
Buhl
,
T.
, 2001, “
Simultaneous Topology Optimization of Structure and Supports
,”
Struct. Multidiscip. Optim.
,
23
(
5
), pp.
336
346
.
50.
Duysinx
,
P.
, and
Bendsøe
,
M. P.
, 1998, “
Topology Optimization of Continuum Structures With Local Stress Constraints
,”
Int. J. Numer. Methods Eng.
,
43
(
8
), pp.
1453
1478
.
You do not currently have access to this content.