This paper presents a multidisciplinary optimization framework developed by the authors and applied to small-size supersonic aircraft. The multidisciplinary analysis suite is based on the combination of low (empirical) and high-fidelity computational fluid dynamics (CFD) and computational structure mechanics (CSM) tools for predicting the overall aircraft performance and the sonic boom overpressure at supersonic flight, which represents the most challenging environmental constraint for supersonic aircraft. The analysis suite is coupled with a multi-objective optimization strategy for quantifying the trade-off between the maximum take-off weight, mission range, and the sonic boom overpressure. The optimization framework is applied to a small-size supersonic business-jet cruising at Mach number M = 1.8 and featuring a double delta wing. The trade-offs between disciplines are well captured and an optimized configuration achieving the target mission range with a lower maximum take-off weight, and a moderate sonic boom signature is obtained through changes in wing dihedral and sweep. A more drastic reduction of the sonic boom signature is also obtained but at the cost of a significant reduction of the aircraft performance.

References

1.
Deremaux
,
Y.
, 2009, “
Why a Small Size Supersonic Transport Aircraft? Objectives and Trade-Offs
,”
HISAC 2009 Conference
,
Paris
.
2.
Herrmann
,
U.
, 2004, “
CISAP: Cruise Speed Impact on Supersonic Aircraft Planform—A Project Overview
,”
10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Albany, New York
, AIAA Paper No. 2004-4539.
3.
Laban
,
M.
, 2004, “
Multi-Disciplinary Analysis and Optimization of Supersonic Transport Aircraft Wing Planforms
,”
10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Albany, New York
, AIAA Paper No. 2004-4542.
4.
Carrier
,
G.
, 2004, “
Multi-Disciplinary Optimisation of a Supersonic Transport Aircraft Wing Planform
,” European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS, July 24–28.
5.
Laban
,
M.
, and
Herrmann
,
U.
, 2007, “
Multi-Disciplinary Analysis and Optimisation Applied to Supersonic Aircraft; Part 1: Analysis Tools
,”
3rd AIAA Multidisciplinary Design Optimization Specialist Conference
,
Honolulu, Hawaii
, AIAA Paper No. 2007-1857.
6.
Parnis
,
P.
, 2005, “
High Speed Aircraft (HISAC)—A European ‘Integrated Project,’”
II International Scientific and Technical Conference
,
Moscow, Russia
.
7.
Wintzer
,
M.
,
Sturdza
,
P.
, and
Kroo
,
I.
, 2006, “
Conceptual Design of Conventional and Oblique Wing Configurations for Small Supersonic Aircraft
,”
44th AIAA Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 9–12.
8.
Choi
,
S.
,
Alonso
,
J.
,
Kroo
,
I.
, and
Wintzer
,
M.
, 2008, “
Multifidelity Design Optimization of Low-Boom Supersonic Jets
,”
J. Aircr.
,
45
(
1
), pp.
106
118
.
9.
Geiselhart
,
K. A.
,
Ozoroski
,
L. P.
,
Fenbert
,
J. W.
,
Shields
,
E. W.
, and
Li
,
W.
, 2011, “
Integration of Multifidelity Multidisciplinary Computer Codes for Design and Analysis of Supersonic Aircraft
,”
49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
, Orlando, FL, AIAA Paper No. 2011-465.
10.
Martins
,
J. R. R. A.
,
Alonso
,
J. J.
, and
Reuther
,
J. J.
, 2004, “
High-Fidelity Aerostructural Design Optimization of a Supersonic Business Jet
,”
J. Aircr.
,
41
(
3
), pp.
523
530
.
11.
Herrmann
,
U.
, and
Laban
,
M.
, 2007, “
Multi-Disciplinary Analysis and Optimisation Applied to Supersonic Aircraft; Part 2: Application and Results
,”
3rd AIAA Multidisciplinary Design Optimization Specialist Conference
,
Honolulu, Hawaii
, AIAA Paper No. 2007-1857.
12.
Wu
,
L.
,
Shields
,
E.
, and
Le
,
D.
, 2008, “
Interactive Inverse Design Optimization of Fuselage Shape for Low-Boom Supersonic Concepts
,”
J. Aircr.
,
45
(
4
), pp.
1381
1397
.
13.
Seto
,
N.
, 2010, “
Multi-Disciplinary Design Optimization of Supersonic Transport Wing Using Surrogate Model
,”
27th International Congress of the Aeronautical Sciences
, Nice, France, ICAS-Paper No. 369.
14.
Choi
,
S.
,
Alonso
,
J. J.
, and
Weide
,
E.
, 2004, “
Numerical and Mesh Resolution Requirements for Accurate Sonic Boom Prediction of Complete Aircraft Configurations
,”
42nd AIAA Aerospace Sciences Meeting and Exhibit
, Reno, Neveda, AIAA Paper No. 2004-1060.
15.
Choi
,
S.
,
Alonso
,
J. J.
, and
Chung
,
H. S.
, 2004, “
Design of a Low-Boom Supersonic Business Jet Using Evolutionary Algorithms and an Adaptive Unstructured Mesh Method
,”
45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Palm Springs
,
CA
, AIAA Paper No. 2004-1758.
16.
Sasaki
,
D.
, and
Obayashi
,
S.
, 2003, “
Low-Boom Design Optimization for SST Canard-Wing-Fuselage Configuration
,”
16th AIAA Computational Fluid Dynamics Conference
,
Orlando, FL
, AIAA Paper No. 2003-3432.
17.
Arendsen
,
P.
, 2001, “
Final Report of the Garteur Action Group SM AG-21 on Multi-Disciplinary Wing Optimisation
,” Report No. NLR-TR-2001-557.
18.
Kesseler
,
E.
,
Laban
,
M.
, and
Vankan
,
W. J.
, 2006, “
Consistent Models for Integrated Multi-Disciplinary Aircraft Wing Design
,”
International Conference on Non-Linear Problems in Aerospace and Aeronautics
.
19.
Laban
,
M.
, 2002, “
A Computational Design Engine for Multi-Disciplinary Optimisation With Application to a Blended Wing Body Configuration
,”
9th AIAA/ASSMO Multidisciplinary Analysis and Optimization Conference
, Atlanta.
20.
Kroll
,
N.
,
Rossow
,
C.-C.
,
Becker
,
K.
, and
Thiele
,
F.
, 2000, “
MEGAFLOW—A Numerical Flow Simulation System
,”
Aerosp. Sci. Technol.
,
4
, pp.
223
237
.
21.
MSC NASTRAN 2001, “
Quick Reference Guide
,” MSC Software Corporation, USA, 2002, http://www.mscsoftware.com/Products/CAE-Tools/MSC-Nastran.aspxhttp://www.mscsoftware.com/Products/CAE-Tools/MSC-Nastran.aspx
23.
Grenon
,
R.
,
Le Pape
,
M.-C.
, and
Montigny-Rannou
F.
, 2006, “
Évaluation de méthodes de raccordement évoluées entre l’aérodynamique et la propagation acoustique pour la prévision du bang sonique
,” ONERA RT 2/10295 DSNA, Mars.
24.
Plotkin
,
K. J.
, and
Maglieri
,
D. J.
, 2003, “
Sonic Boom Research: History and Future
,”
21st Applied Aerodynamics Conference
, Orlando, FL, June 23–26, AIAA Paper No. 2003-3575.
25.
Plotkin
,
K.
, and
Page
,
J.
, 2002, “
Extrapolation of Sonic Boom Signatures From CFD Solution
,”
40th AIAA Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 14–17, AIAA Paper No. 2002-0922.
26.
Salah el Din
,
I.
, 2004, “
Contribution à l’optimisation de la forme aérodynamique d’un avion de transport supersonique en vue de la réduction du bang
,” Thèse de doctorat, Université de Poitiers.
27.
Leatherwood
,
J. D.
,
Sullivan
,
B. M.
,
Shepherd
,
K. P.
,
McCurdy
,
D. A.
, and
Brown
,
S. A.
, 2002, “
Summary of Recent NASA Studies of Human Response to Sonic Booms
,”
J. Acoust. Soc. Am.
,
111
, pp.
586
598
.
28.
Chan
,
M.
, 2003, “
Supersonic Aircraft Optimization for Minimizing Drag and Sonic Boom
,” Ph.D. thesis, Stanford University, Stanford, CA.
29.
Coulouvrat
,
F.
,
Ollivier
,
S.
,
Blanc-Benon
,
P.
, and
Héron
,
N.
, 2006, “
Review of Sonic Boom Impacts
,” HISAC Publishable Activity Report, http://www.hisacproject.com/publications.htmlhttp://www.hisacproject.com/publications.html
30.
Sasaki
,
D.
, and
Obayashi
,
S.
, 2005, “
Efficient Search for Trade-Offs by Adaptive Range Multi-Objective Genetic Algorithms
,”
AIAA J. Aerosp. Comput. Inf. Commun.
,
2
, pp.
44
64
.
31.
Pietremont
,
N.
, and
Deremaux
Y.
, 2005, “
Executive Public Summary of the Three Preliminary Aircraft Configuration Families
,” HISAC Publishable Activity Report, http://www.hisacproject.com/publications.htmlhttp://www.hisacproject.com/publications.html
You do not currently have access to this content.