This article proposes a novel ranked-based method for size optimization of structures. This method uses violation-based sensitivity analysis and borderline adaptive sliding technique (ViS-BLAST) on the margin of feasible nonfeasible (FNF) design space. ViS-BLAST maybe considered a multiphase optimization technique, where in the first phase, the first arbitrary local optimum is found by few analyses and in the second phase, a sequence of local optimum points is found through jumps and BLASTs until the global optimum is found. In fact, this technique reaches a sensitive margin zone where the global optimum is located, with a small number of analyses, utilizing a space-degradation strategy (SDS). This strategy substantially degrades the high order searching space and then proceeds with the proposed ViS-BLAST search for the optimum design. Its robustness and effectiveness are then defied by some well-known benchmark examples. The ViS-BLAST not only speeds up the optimization procedure but also it ensures nonviolated optimum designs.

References

1.
Arora
,
J. S.
,
2007
,
Optimization of Structural and Mechanical Systems
,
World Scientific
, Singapore.
2.
Choi
,
K. K.
, and
Kim
,
N.-H.
,
2006
,
Structural Sensitivity Analysis and Optimization 1: Linear Systems
,
Springer
, New York.
3.
Lagaros
,
N. D.
,
Papadrakakis
,
M.
, and
Kokossalakis
,
G.
,
2002
, “
Structural Optimization Using Evolutionary Algorithms
,”
Comput. Struct.
,
80
(
7
), pp.
571
589
.
4.
Chapman
,
C. D.
,
Saitou
,
K.
, and
Jakiela
,
M. J.
,
1994
, “
Genetic Algorithms as an Approach to Configuration and Topology Design
,”
ASME J. Mech. Des.
,
116
(
4
), pp.
1005
1012
.
5.
Erbatur
,
F.
,
Hasançebi
,
O.
,
Tütüncü
,
İ.
, and
Kılıç
,
H.
,
2000
, “
Optimal Design of Planar and Space Structures With Genetic Algorithms
,”
Comput. Struct.
,
75
(
2
), pp.
209
224
.
6.
Li
,
M.
,
Azarm
,
S.
, and
Aute
,
V.
,
2005
, “
A Multi-Objective Genetic Algorithm for Robust Design Optimization
,”
7th Annual Conference on Genetic and Evolutionary Computation
(
GECCO '05
), ACM, Washington, DC, pp.
771
778
.
7.
Toğan
,
V.
, and
Daloğlu
,
A. T.
,
2006
, “
Optimization of 3D Trusses With Adaptive Approach in Genetic Algorithms
,”
Eng. Struct.
,
28
(
7
), pp.
1019
1027
.
8.
Chapman
,
C. D.
, and
Jakiela
,
M.
,
1996
, “
Genetic Algorithm-Based Structural Topology Design With Compliance and Topology Simplification Considerations
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
89
98
.
9.
Narayanan
,
S.
, and
Azarm
,
S.
,
1999
, “
On Improving Multiobjective Genetic Algorithms for Design Optimization
,”
Struct. Optim.
,
18
(
2–3
), pp.
146
155
.
10.
Degertekin
,
S. O.
,
Saka
,
M. P.
, and
Hayalioglu
,
M. S.
,
2008
, “
Optimal Load and Resistance Factor Design of Geometrically Nonlinear Steel Space Frames Via Tabu Search and Genetic Algorithm
,”
Eng. Struct.
,
30
(
1
), pp.
197
205
.
11.
Lamberti
,
L.
,
2008
, “
An Efficient Simulated Annealing Algorithm for Design Optimization of Truss Structures
,”
Comput. Struct.
,
86
(
19
), pp.
1936
1953
.
12.
Hasançebi
,
O.
, and
Erbatur
,
F.
,
2002
, “
On Efficient Use of Simulated Annealing in Complex Structural Optimization Problems
,”
Acta Mech.
,
157
(
1–4
), pp.
27
50
.
13.
Camp
,
C.
,
Bichon
,
B.
, and
Stovall
,
S.
,
2005
, “
Design of Steel Frames Using Ant Colony Optimization
,”
J. Struct. Eng.
,
131
(
3
), pp.
369
379
.
14.
Li
,
H.
, and
Chandrashekhara
,
K.
,
2012
, “
Structural Optimization of Laminated Composite Blade Using Particle Swarm Optimization
,”
ASME
Paper No. IMECE2012-88313.
15.
Mourelatos
,
Z. P.
, and
Zhou
,
J.
,
2005
, “
A Design Optimization Method Using Evidence Theory
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
901
908
.
16.
Nguyen
,
T.
,
Ghabraie
,
K.
, and
Tran-Cong
,
T.
,
2014
, “
Applying Bi-Directional Evolutionary Structural Optimisation Method for Tunnel Reinforcement Design Considering Nonlinear Material Behavior
,”
Comput. Geotech.
,
55
, pp.
57
66
.
17.
Gandomi
,
A.
,
Yang
,
X.-S.
, and
Alavi
,
A.
,
2013
, “
Cuckoo Search Algorithm: A Metaheuristic Approach to Solve Structural Optimization Problems
,”
Eng. Comput.
,
29
(
1
), pp.
17
35
.
18.
Yang
,
X.-S.
,
2005
, “
Engineering Optimizations Via Nature-Inspired Virtual Bee Algorithms
,”
Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach
,
J.
Mira
and
J.
Álvarez
, eds.,
Springer
,
Berlin
, pp.
317
323
.
19.
Oftadeh
,
R.
, and
Mahjoob
,
M.
,
2010
, “
A New Structural Optimization Method Based on Group Hunting of Animals: Hunting Search (HuS)
,”
ASME
Paper No. ESDA2010-24565.
20.
Li
,
L. J.
,
Huang
,
Z. B.
,
Liu
,
F.
, and
Wu
,
Q. H.
,
2007
, “
A Heuristic Particle Swarm Optimizer for Optimization of Pin Connected Structures
,”
Comput. Struct.
,
85
(
7–8
), pp.
340
349
.
21.
Yang
,
X.-S.
,
Koziel
,
S.
, and
Leifsson
,
L.
,
2013
, “
Computational Optimization, Modelling and Simulation: Recent Trends and Challenges
,”
Procedia Comput. Sci.
,
18
, pp.
855
860
.
22.
Belegundu
,
A. D.
, and
Chandrupatla
,
T. R.
,
2011
,
Optimization Concepts and Applications in Engineering
,
Cambridge University Press
, New York.
23.
Venkayya
,
V. B.
,
1971
, “
Design of Optimum Structures
,”
Comput. Struct.
,
1
(
2
), pp.
265
309
.
24.
Camp
,
C.
, and
Bichon
,
B.
,
2004
, “
Design of Space Trusses Using Ant Colony Optimization
,”
J. Struct. Eng.
,
130
(
5
), pp.
741
751
.
25.
Lee
,
K. S.
, and
Geem
,
Z. W.
,
2004
, “
A New Structural Optimization Method Based on the Harmony Search Algorithm
,”
Comput. Struct.
,
82
(
9–10
), pp.
781
798
.
26.
Sonmez
,
M.
,
2011
, “
Artificial Bee Colony Algorithm for Optimization of Truss Structures
,”
Appl. Soft Comput.
,
11
(
2
), pp.
2406
2418
.
27.
Rizzi
,
P.
,
1976
, “
Optimization of Multi-Constrained Structures Based on Optimality Criteria
,”
AIAA/ASME/SAE 17th Structures, Structural Dynamics, and Materials Conference
, King of Prussia, PA, pp. 1579–1588.
28.
Kaveh
,
A.
,
Sheikholeslami
,
R.
,
Talatahari
,
S.
, and
Keshvari-Ilkhichi
,
M.
,
2014
, “
Chaotic Swarming of Particles: A New Method for Size Optimization of Truss Structures
,”
Adv. Eng. Software
,
67
(1), pp.
136
147
.
29.
Perez
,
R. E.
, and
Behdinan
,
K.
,
2007
, “
Particle Swarm Approach for Structural Design Optimization
,”
Comput. Struct.
,
85
(
19–20
), pp.
1579
1588
.
30.
Degertekin
,
S. O.
,
2012
, “
Improved Harmony Search Algorithms for Sizing Optimization of Truss Structures
,”
Comput. Struct.
,
92–93
(2), pp.
229
241
.
You do not currently have access to this content.