This article provides an overview of the operational strategies adopted in microgrippers design. The review covers microgrippers recently proposed in Literature, some of which have been systematically presented in a companion paper, where their topological, kinematic, and structural characteristics are discussed. In the present contribution, the prevalent actuation methods and the operational aspects are discussed: the tip displacement, the tip force, the actuation voltage, and the amplification factor are the reference parameters that are adopted to compare the different types of actuation and operational strategies. In addition, the control strategies and control algorithms currently adopted are reviewed.
Issue Section:
Review Article
References
1.
Agnus
, J.
, Nectoux
, P.
, and Chaillet
, N.
, 2005
, “Overview of Microgrippers and Design of a Micro Manipulation Station Based on a MMOC Microgripper
,” IEEE International Symposium on Computational Intelligence in Robotics and Automation
(CIRA
), Espoo, Finland, June 27–30, pp. 117
–123
.2.
Carrozza
, M. C.
, Eisinberg
, A.
, Menciassi
, A.
, Campolo
, D.
, Micera
, S.
, and Dario
, P.
, 2000
, “Towards a Force-Controlled Microgripper for Assembling Biomedical Microdevices
,” J. Micromech. Microeng.
, 10
(2
), p. 271
.3.
Kim
, D.-H.
, Kim
, B.
, and Kang
, H.
, 2004
, “Development of a Piezoelectric Polymer-Based Sensorized Microgripper for Microassembly and Micromanipulation
,” Microsyst. Technol.
, 10
(4
), pp. 275
–280
.4.
Wierzbicki
, R.
, Houston
, K.
, Heerlein
, H.
, Barth
, W.
, Debski
, T.
, Eisinberg
, A.
, Menciassi
, A.
, Carrozza
, M.
, and Dario
, P.
, 2006
, “Design and Fabrication of an Electrostatically Driven Microgripper for Blood Vessel Manipulation
,” Microelectron. Eng.
, 83
(4–9
), pp. 1651
–1654
.5.
Solano
, B.
, and Wood
, D.
, 2007
, “Design and Testing of a Polymeric Microgripper for Cell Manipulation
,” Microelectron. Eng.
, 84
(5–8
), pp. 1219
–1222
.6.
Yamahata
, C.
, Collard
, D.
, Legrand
, B.
, Takekawa
, T.
, Kumemura
, M.
, Hashiguchi
, G.
, and Fujita
, H.
, 2008
, “Silicon Nanotweezers With Subnanometer Resolution for the Micromanipulation of Biomolecules
,” J. Microelectromech. Syst.
, 17
(3
), pp. 623
–631
.7.
Zubir
, M. N. M.
, Shirinzadeh
, B.
, and Tian
, Y.
, 2009
, “A New Design of Piezoelectric Driven Compliant-Based Microgripper for Micromanipulation
,” Mech. Mach. Theory
, 44
(12
), pp. 2248
–2264
.8.
Zhang
, R.
, Chu
, J.
, Wang
, H.
, and Chen
, Z.
, 2013
, “A Multipurpose Electrothermal Microgripper for Biological Micro-Manipulation
,” Microsyst. Technol.
, 19
(1
), pp. 89
–97
.9.
Verotti
, M.
, Dochshanov
, A.
, and Belfiore
, N. P.
, 2016
, “A Comprehensive Survey on Microgrippers Design: Mechanical Structure
,” ASME J. Mech. Des.
(accepted).10.
Thielicke
, E.
, and Obermeier
, E.
, 2000
, “Microactuators and Their Technologies
,” Mechatronics
, 10
(4–5
), pp. 431
–455
.11.
Bell
, D. J.
, Lu
, T. J.
, Fleck
, N. A.
, and Spearing
, S. M.
, 2005
, “MEMS Actuators and Sensors: Observations on Their Performance and Selection for Purpose
,” J. Micromech. Microeng.
, 15
(7
), p. S153
.12.
Fleming
, A. J.
, 2013
, “A Review of Nanometer Resolution Position Sensors: Operation and Performance
,” Sens. Actuators, A
, 190
, pp. 106
–126
.13.
Wei
, Y.
, and Xu
, Q.
, 2015
, “An Overview of Micro-Force Sensing Techniques
,” Sens. Actuators, A
, 234
, pp. 359
–374
.14.
Boudaoud
, M.
, and Regnier
, S.
, 2014
, “An Overview on Gripping Force Measurement at the Micro and Nano-Scales Using Two-Fingered Microrobotic Systems
,” Int. J. Adv. Rob. Syst.
, 11
(3
), p. 45
.15.
Desmaële
, D.
, Boukallel
, M.
, and Régniér
, S.
, 2011
, “Actuation Means for the Mechanical Stimulation of Living Cells Via Microelectromechanical Systems: A Critical Review
,” J. Biomech.
, 44
(8
), pp. 1433
–1446
.16.
Cullinan
, M. A.
, Panas
, R. M.
, DiBiasio
, C. M.
, and Culpepper
, M. L.
, 2012
, “Scaling Electromechanical Sensors Down to the Nanoscale
,” Sens. Actuators, A
, 187
, pp. 162
–173
.17.
Hubbard
, N. B.
, Culpepper
, M. L.
, and Howell
, L. L.
, 2006
, “Actuators for Micropositioners and Nanopositioners
,” ASME Appl. Mech. Rev.
, 59
(6
), pp. 324
–334
.18.
Cecil
, J.
, Vasquez
, D.
, and Powell
, D.
, 2005
, “A Review of Gripping and Manipulation Techniques for Micro-Assembly Applications
,” Int. J. Prod. Res.
, 43
(4
), pp. 819
–828
.19.
Cecil
, J.
, Powell
, D.
, and Vasquez
, D.
, 2007
, “Assembly and Manipulation of Micro Devices—A State of the Art Survey
,” Rob. Comput.-Integr. Manuf.
, 23
(5
), pp. 580
–588
.20.
Fantoni
, G.
, and Porta
, M.
, 2008
, “A Critical Review of Releasing Strategies in Microparts Handling
,” Micro-Assembly Technologies and Applications
(IFIP Advances in Information and Communication Technology), Vol. 260
, S.
Ratchev
and S.
Koelemeijer
, eds., Springer
, Boston, MA
.21.
Jia
, Y.
, and Xu
, Q.
, 2013
, “MEMS Microgripper Actuators and Sensors: The State-of-the-Art Survey
,” Recent Pat. Mech. Eng.
, 6
(2
), pp. 132
–142
.22.
Millet
, O.
, Bernardoni
, P.
, Régnier
, S.
, Bidaud
, P.
, Tsitsiris
, E.
, Collard
, D.
, and Buchaillot
, L.
, 2004
, “Electrostatic Actuated Micro Gripper Using an Amplification Mechanism
,” Sens. Actuators, A
, 114
(2–3
), pp. 371
–378
.23.
Shi
, X.
, Chen
, W.
, Zhang
, J.
, and Chen
, W.
, 2013
, “Design, Modeling, and Simulation of a 2-DOF Microgripper for Grasping and Rotating of Optical Fibers
,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(AIM
), Wollongong, Australia, July 9–12, pp. 1597
–1602
.24.
Kim
, D.-H.
, Lee
, M. G.
, Kim
, B.
, and Sun
, Y.
, 2005
, “A Superelastic Alloy Microgripper With Embedded Electromagnetic Actuators and Piezoelectric Force Sensors: A Numerical and Experimental Study
,” Smart Mater. Struct.
, 14
(6
), p. 1265
.25.
Nah
, S.
, and Zhong
, Z.
, 2007
, “A Microgripper Using Piezoelectric Actuation for Micro-Object Manipulation
,” Sens. Actuators, A
, 133
(1
), pp. 218
–224
.26.
Lerch
, P.
, Slimane
, C. K.
, Romanowicz
, B.
, and Renaud
, P.
, 1996
, “Modelization and Characterization of Asymmetrical Thermal Micro-Actuators
,” J. Micromech. Microeng.
, 6
(1
), p. 134
.27.
Roch
, I.
, Bidaud
, P.
, Collard
, D.
, and Buchaillot
, L.
, 2003
, “Fabrication and Characterization of an Su-8 Gripper Actuated by a Shape Memory Alloy Thin Film
,” J. Micromech. Microeng.
, 13
(2
), p. 330
.28.
Luo
, J.
, Huang
, R.
, He
, J.
, Fu
, Y.
, Flewitt
, A.
, Spearing
, S.
, Fleck
, N.
, and Milne
, W.
, 2006
, “Modelling and Fabrication of Low Operation Temperature Microcages With a Polymer/Metal/DLC Trilayer Structure
,” Sens. Actuators, A
, 132
(1
), pp. 346
–353
.29.
Neagu
, C.
, Jansen
, H.
, Gardeniers
, H.
, and Elwenspoek
, M.
, 2000
, “The Electrolysis of Water: An Actuation Principle for MEMS With a Big Opportunity
,” Mechatronics
, 10
(4–5
), pp. 571
–581
.30.
Iamoni
, S.
, and Somà
, A.
, 2014
, “Design of an Electro-Thermally Actuated Cell Microgripper
,” Microsyst. Technol.
, 20
(4–5
), pp. 869
–877
.31.
Chen
, T.
, Chen
, L.
, Sun
, L.
, Wang
, J.
, and Li
, X.
, 2008
, A Sidewall Piezoresistive Force Sensor Used in a MEMS Gripper
(Lecture Notes in Computer Science: Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 5315
, Springer
, New York
, pp. 207
–216
.32.
Ali
, N.
, Shakoor
, R.
, and Hassan
, M.
, 2011
, “Design, Modeling and Simulation of Electrothermally Actuated Microgripper With Integrated Capacitive Contact Sensor
,” IEEE 14th International Multitopic Conference
(INMIC
), Karachi, Pakistan, Dec. 22–24, pp. 201
–206
.33.
Fu
, Y.
, Luo
, J.
, Flewitt
, A.
, and Milne
, W.
, 2012
, “Smart Microgrippers for bioMEMS Applications
,” MEMS for Biomedical Applications
(Woodhead Publishing Series in Biomaterials), S.
Bhansali
and A.
Vasudev
, eds., Woodhead Publishing
, Cambridge, UK
, pp. 291
–336
.34.
Tsai
, Y.-C.
, Lei
, S. H.
, and Sudin
, H.
, 2005
, “Design and Analysis of Planar Compliant Microgripper Based on Kinematic Approach
,” J. Micromech. Microeng.
, 15
(1
), p. 143
.35.
Judy
, J. W.
, 2006
, “Microactuators,” MEMS
, J. G.
Korvink
and O.
Paul
, eds., William Andrew Publishing
, Norwich, NY
, pp. 751
–803
.36.
Smith
, S. T.
, and Seugling
, R. M.
, 2006
, “Sensor and Actuator Considerations for Precision, Small Machines
,” Precis. Eng.
, 30
(3
), pp. 245
–264
.37.
Hsu
, T.
, 2008
, MEMS and Microsystems: Design, Manufacture, and Nanoscale Engineering
, Wiley
, Hoboken, NJ
.38.
Kuo
, J.-C.
, Huang
, H.-W.
, Tung
, S.-W.
, and Yang
, Y.-J.
, 2014
, “A Hydrogel-Based Intravascular Microgripper Manipulated Using Magnetic Fields
,” Sens. Actuators, A
, 211
, pp. 121
–130
.39.
Piriyanont
, B.
, and Moheimani
, S.
, 2013
, “Design, Modeling, and Characterization of a MEMS Micro-Gripper With an Integrated Electrothermal Force Sensor
,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(AIM
), Wollongong, Australia, July 9–12, pp. 348
–353
.40.
Nguyen
, N.-T.
, Ho
, S.-S.
, and Low
, C. L.-N.
, 2004
, “A Polymeric Microgripper With Integrated Thermal Actuators
,” J. Micromech. Microeng.
, 14
(7
), p. 969
.41.
Zhang
, R.
, Chu
, J.
, Guan
, L.
, Li
, S.
, and Min
, J.
, 2014
, “Microgripping Force Measuring Device Based on Su-8 Microcantilever Sensor
,” J. Micro/Nanolithogr., MEMS, MOEMS
, 13
(1
), p. 013007
.42.
Nikoobin
, A.
, and Niaki
, M. H.
, 2012
, “Deriving and Analyzing the Effective Parameters in Microgrippers Performance
,” Sci. Iran.
, 19
(6
), pp. 1554
–1563
.43.
Li
, L.
, and Chew
, Z.
, 2014
, “Microactuators: Design and Technology
,” Smart Sensors and MEMS
, S.
Nihtianov
and A.
Luque
, eds., Woodhead Publishing
, Cambridge, UK
, pp. 305
–348
.44.
Ghosh
, A.
, and Corves
, B.
, 2015
, Micromechanisms
, Springer India
, New Delhi, India
, pp. 51
–56
.45.
Mita
, M.
, Arai
, M.
, Tensaka
, S.
, Kobayashi
, D.
, and Fujita
, H.
, 2003
, “A Micromachined Impact Microactuator Driven by Electrostatic Force
,” J. Microelectromech. Syst.
, 12
(1
), pp. 37
–41
.46.
Maroufi
, M.
, and Moheimani
, S. O. R.
, 2013
, “Design, Fabrication and Characterization of a High-Bandwidth 2DOF MEMS Nanopositioner
,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(AIM
), Wollongong, Australia, July 9–12, pp. 335
–340
.47.
Mehdizadeh
, E.
, Rostami
, M.
, Guo
, X.
, and Pourkamali
, S.
, 2014
, “Atomic Resolution Disk Resonant Force and Displacement Sensors for Measurements in Liquid
,” IEEE Electron Device Lett.
, 35
(8
), pp. 874
–876
.48.
Zhang
, W.-M.
, Meng
, G.
, and Chen
, D.
, 2007
, “Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices
,” Sensors
, 7
(5
), pp. 760
–796
.49.
Wierzbicki
, R.
, Adda
, C.
, and Hötzendorfer
, H.
, 2007
, “Electrostatic Silicon Microgripper With Low Voltage of Actuation
,” International Symposium on Micro-Nano-Mechatronics and Human Science
(MHS'07
), Nagoya, Japan, Nov. 11–14, pp. 344
–349
.50.
Yeh
, J.
, Jiang
, S.-S.
, and Lee
, C.
, 2006
, “MOEMS Variable Optical Attenuators Using Rotary Comb Drive Actuators
,” IEEE Photonics Technol. Lett.
, 18
(10
), pp. 1170
–1172
.51.
Bazaz
, S.
, Khan
, F.
, and Shakoor
, R.
, 2011
, “Design, Simulation and Testing of Electrostatic SOI MUMPs Based Microgripper Integrated With Capacitive Contact Sensor
,” Sens. Actuators, A
, 167
(1
), pp. 44
–53
.52.
Hamedi
, M.
, Salimi
, P.
, and Vismeh
, M.
, 2012
, “Simulation and Experimental Investigation of a Novel Electrostatic Microgripper System
,” Microelectron. Eng.
, 98
, pp. 467
–471
.53.
Sahu
, B.
, Taylor
, C. R.
, and Leang
, K. K.
, 2010
, “Emerging Challenges of Microactuators for Nanoscale Positioning, Assembly, and Manipulation
,” ASME J. Manuf. Sci. Eng.
, 132
(3
), p. 030917
.54.
Fraser
, J.
, Hubbard
, T.
, and Kujath
, M.
, 2006
, “Theoretical and Experimental Analysis of an Off-Chip Microgripper
,” Can. J. Electr. Comput. Eng.
, 31
(2
), pp. 77
–84
.55.
Volland
, B.
, Heerlein
, H.
, and Rangelow
, I.
, 2002
, “Electrostatically Driven Microgripper
,” Microelectron. Eng.
, 61–62
, pp. 1015
–1023
.56.
Chen
, T.
, Sun
, L.
, Chen
, L.
, Rong
, W.
, and Li
, X.
, 2010
, “A Hybrid-Type Electrostatically Driven Microgripper With an Integrated Vacuum Tool
,” Sens. Actuators, A
, 158
(2
), pp. 320
–327
.57.
Chronis
, N.
, and Lee
, L.
, 2004
, “Polymer MEMS-Based Microgripper for Single Cell Manipulation
,” 17th IEEE International Conference on Micro Electro Mechanical Systems
(MEMS
), Maastricht, The Netherlands, Jan. 25–29, pp. 17
–20
.58.
Chan
, E. K.
, and Dutton
, R. W.
, 2000
, “Electrostatic Micromechanical Actuator With Extended Range of Travel
,” J. Microelectromech. Syst.
, 9
(3
), pp. 321
–328
.59.
Li
, Y.
, Li
, Y.
, Li
, Q.
, and Zi
, Y.
, 2003
, “Microgripper Based on Silicon Bulk Micromachining
,” Qinghua Daxue Xuebao
, 43
(5
), pp. 655
–658
.60.
Kalaiarasi
, A.
, and Thilagar
, S.
, 2012
, “Design and Modeling of Electrostatically Actuated Microgripper
,” IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications
(MESA
), Suzhou, China, July 8–10, pp. 7
–11
.61.
Yeh
, J. A.
, Chen
, C.-N.
, and Lui
, Y.-S.
, 2005
, “Large Rotation Actuated by In-Plane Rotary Comb-Drives With Serpentine Spring Suspension
,” J. Micromech. Microeng.
, 15
(1
), p. 201
.62.
Chang
, H.
, Zhao
, H.
, Ye
, F.
, Yuan
, G.
, Xie
, J.
, Kraft
, M.
, and Yuan
, W.
, 2014
, “A Rotary Comb-Actuated Microgripper With a Large Displacement Range
,” Microsyst. Technol.
, 20
(1
), pp. 119
–126
.63.
Demaghsi
, H.
, Mirzajani
, H.
, and Ghavifekr
, H.
, 2014
, “A Novel Electrostatic Based Microgripper (Cellgripper) Integrated With Contact Sensor and Equipped With Vibrating System to Release Particles Actively
,” Microsyst. Technol.
, 20
(12
), pp. 2191
–2202
.64.
Khan
, F.
, Bazaz
, S.
, and Sohail
, M.
, 2010
, “Design, Implementation and Testing of Electrostatic SOI MUMPs Based Microgripper
,” Microsyst. Technol.
, 16
(11
), pp. 1957
–1965
.65.
Kim
, C.-J.
, Pisano
, A.
, and Muller
, R.
, 1992
, “Silicon-Processed Overhanging Microgripper
,” J. Microelectromech. Syst.
, 1
(1
), pp. 31
–36
.66.
Chen
, T.
, Chen
, L.
, Sun
, L.
, Rong
, W.
, and Yang
, Q.
, 2010
, “Micro Manipulation Based on Adhesion Control With Compound Vibration
,” IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS
), Taipei, Taiwan, Oct. 18–22, pp. 6137
–6142
.67.
Chen
, B.
, Zhang
, Y.
, and Sun
, Y.
, 2009
, “Active Release of Microobjects Using a MEMS Microgripper to Overcome Adhesion Forces
,” J. Microelectromech. Syst.
, 18
(3
), June, pp. 652
–659
.68.
Beyeler
, F.
, Neild
, A.
, Oberti
, S.
, Bell
, D.
, Sun
, Y.
, Dual
, J.
, and Nelson
, B.
, 2007
, “Monolithically Fabricated Microgripper With Integrated Force Sensor for Manipulating Microobjects and Biological Cells Aligned in an Ultrasonic Field
,” J. Microelectromech. Syst.
, 16
(1
), pp. 7
–15
.69.
Piriyanont
, B.
, Fowler
, A.
, and Moheimani
, S.
, 2015
, “Force-Controlled MEMS Rotary Microgripper
,” J. Microelectromech. Syst.
, 24
(4
), pp. 1164
–1172
.70.
Piriyanont
, B.
, and Moheimani
, S.
, 2014
, “MEMS Rotary Microgripper With Integrated Electrothermal Force Sensor
,” J. Microelectromech. Syst.
, 23
(6
), pp. 1249
–1251
.71.
Que
, L.
, 2008
, “Thermal Actuation
,” Comprehensive Microsystems
, Vol. 2
, Y. B. G. T.
Zappe
, ed., Elsevier
, Amsterdam, The Netherlands
, pp. 69
–100
.72.
Iamoni
, S.
, and Somà
, A.
, 2013
, “Design of Cell Microgripper and Actuation Strategy
,” Proc. SPIE
, 8765
, p. 876505
.73.
Ivanova
, K.
, Ivanov
, T.
, Badar
, A.
, Volland
, B. E.
, Rangelow
, I. W.
, Andrijasevic
, D.
, Sümecz
, F.
, Fischer
, S.
, Spitzbart
, M.
, Brenner
, W.
, and Kostic
, I.
, 2006
, “Thermally Driven Microgripper as a Tool for Micro Assembly
,” Microelectron. Eng.
, 83
(4–9
), pp. 1393
–1395
.74.
Chronis
, N.
, and Lee
, L. P.
, 2005
, “Electrothermally Activated Su-8 Microgripper for Single Cell Manipulation in Solution
,” J. Microelectromech. Syst.
, 14
(4
), pp. 857
–863
.75.
Kohl
, M.
, Just
, E.
, Pfleging
, W.
, and Miyazaki
, S.
, 2000
, “SMA Microgripper With Integrated Antagonism
,” Sens. Actuators, A
, 83
(1–3
), pp. 208
–213
.76.
Kohl
, M.
, Krevet
, B.
, and Just
, E.
, 2002
, “SMA Microgripper System
,” Sens. Actuators, A
, 97–98
, pp. 646
–652
.77.
Boudaoud
, M.
, Haddab
, Y.
, and Le Gorrec
, Y.
, 2010
, “Modelling of a MEMS-Based Microgripper: Application to Dexterous Micromanipulation
,” IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS
), Taipei, Taiwan, Oct. 18–22, pp. 5634
–5639
.78.
Duc
, T.
, Lau
, G.
, Creemer
, J.
, and Sarro
, P.
, 2008
, “Electrothermal Microgripper With Large Jaw Displacement and Integrated Force Sensors
,” J. Microelectromech. Syst.
, 17
(6
), pp. 1546
–1555
.79.
Piriyanont
, B.
, Moheimani
, S.
, and Bazaei
, A.
, 2013
, “Design and Control of a MEMS Micro-Gripper With Integrated Electro-Thermal Force Sensor
,” 3rd Australian Control Conference
(AUCC
), Fremantle, Australia, Nov. 4–5, pp. 479
–484
.80.
Zeman
, M. J. F.
, Bordatchev
, E. V.
, and Knopf
, G. K.
, 2006
, “Design, Kinematic Modeling and Performance Testing of an Electro-Thermally Driven Microgripper for Micromanipulation Applications
,” J. Micromech. Microeng.
, 16
(8
), p. 1540
.81.
Chang
, R.-J.
, and Cheng
, C.-Y.
, 2009
, “Vision-Based Compliant-Joint Polymer Force Sensor Integrated With Microgripper for Measuring Gripping Force
,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(AIM
), Singapore, July 14–17, pp. 18
–23
.82.
Chang
, R.-J.
, Shiu
, C.-C.
, and Cheng
, C.-Y.
, 2013
, “Self-Biased-SMA Drive PU Microgripper With Force Sensing in Visual Servo
,” Int. J. Adv. Rob. Syst.
, 10
(6
), p. 280
.83.
Carlson
, K.
, Andersen
, K. N.
, Eichhorn
, V.
, Petersen
, D. H.
, Mølhave
, K.
, Bu
, I. Y. Y.
, Teo
, K. B. K.
, Milne
, W. I.
, Fatikow
, S.
, and Bøggild
, P.
, 2007
, “A Carbon Nanofibre Scanning Probe Assembled Using an Electrothermal Microgripper
,” Nanotechnology
, 18
(34
), p. 345501
.84.
Andersen
, K. N.
, Carlson
, K.
, Petersen
, D. H.
, Mølhave
, K.
, Eichhorn
, V.
, Fatikow
, S.
, and Bøggild
, P.
, 2008
, “Electrothermal Microgrippers for Pick-and-Place Operations
,” Microelectron. Eng.
, 85
(5–6
), pp. 1128
–1130
.85.
Sardan
, O.
, Petersen
, D. H.
, Mølhave
, K.
, Sigmund
, O.
, and Bøggild
, P.
, 2008
, “Topology Optimized Electrothermal Polysilicon Microgrippers
,” Microelectron. Eng.
, 85
(5–6
), pp. 1096
–1099
.86.
Chu
, J.
, Zhang
, R.
, and Chen
, Z.
, 2011
, “A Novel Su-8 Electrothermal Microgripper Based on the Type Synthesis of the Kinematic Chain Method and the Stiffness Matrix Method
,” J. Micromech. Microeng.
, 21
(5
), p. 054030
.87.
Daunton
, R.
, Gallant
, A.
, Wood
, D.
, and Kataky
, R.
, 2011
, “A Thermally Actuated Microgripper as an Electrochemical Sensor With the Ability to Manipulate Single Cells
,” Chem. Commun.
, 47
(22
), pp. 6446
–6448
.88.
Kim
, K.
, Liu
, X.
, Zhang
, Y.
, and Sun
, Y.
, 2008
, “Nanonewton Force-Controlled Manipulation of Biological Cells Using a Monolithic MEMS Microgripper With Two-Axis Force Feedback
,” J. Micromech. Microeng.
, 18
(5
), p. 055013
.89.
Abuzaiter
, A.
, Nafea
, M.
, and Mohamed Ali
, M.
, 2016
, “Development of a Shape-Memory-Alloy Micromanipulator Based on Integrated Bimorph Microactuators
,” Mechatronics
, 38
, pp. 16
–28
.90.
Stevens
, J. M.
, and Buckner
, G. D.
, 2005
, “Actuation and Control Strategies for Miniature Robotic Surgical Systems
,” ASME J. Dyn. Syst. Meas. Control
, 127
(4
), pp. 537
–549
.91.
Kyung
, J.
, Ko
, B.
, Ha
, Y.
, and Chung
, G.
, 2008
, “Design of a Microgripper for Micromanipulation of Microcomponents Using SMA Wires and Flexible Hinges
,” Sens. Actuators, A
, 141
(1
), pp. 144
–150
.92.
Braun
, S.
, Sandstrom
, N.
, Stemme
, G.
, and Van Der Wijngaart
, W.
, 2009
, “Wafer-Scale Manufacturing of Bulk Shape-Memory-Alloy Microactuators Based on Adhesive Bonding of Titanium-Nickel Sheets to Structured Silicon Wafers
,” J. Microelectromech. Syst.
, 18
(6
), pp. 1309
–1317
.93.
Mohamed Ali
, M.
, and Takahata
, K.
, 2010
, “Frequency-Controlled Wireless Shape-Memory-Alloy Microactuators Integrated Using an Electroplating Bonding Process
,” Sens. Actuators, A
, 163
(1
), pp. 363
–372
.94.
Chang
, R.
, and Shiu
, C.
, 2011
, “Vision-Based Control of SMA-Actuated Polymer Microgripper With Force Sensing
,” International Conference on Mechatronics and Automation
(ICMA
), Beijing, China, Aug. 7–10, pp. 2095
–2100
.95.
Clausi
, D.
, Gradin
, H.
, Braun
, S.
, Peirs
, J.
, Stemme
, G.
, Reynaerts
, D.
, and van der Wijngaart
, W.
, 2013
, “Robust Actuation of Silicon MEMS Using SMA Wires Integrated at Wafer-Level by Nickel Electroplating
,” Sens. Actuators, A
, 189
, pp. 108
–116
.96.
AbuZaiter
, A.
, Nafea
, M.
, Mohd Faudzi
, A.
, Kazi
, S.
, and Mohamed Ali
, M.
, 2016
, “Thermomechanical Behavior of Bulk NiTi Shape-Memory-Alloy Microactuators Based on Bimorph Actuation
,” Microsyst. Technol.
, 22
(8
), pp. 2125
–2131
.97.
Zainal
, M. A.
, Sahlan
, S.
, and Ali
, M. S. M.
, 2015
, “Micromachined Shape-Memory-Alloy Microactuators and Their Application in Biomedical Devices
,” Micromachines
, 6
(7
), p. 879
.98.
Small
, W.
, Wilson
, T. S.
, Buckley
, P. R.
, Benett
, W. J.
, Loge
, J. M.
, Hartman
, J.
, and Maitland
, D. J.
, 2007
, “Prototype Fabrication and Preliminary In Vitro Testing of a Shape Memory Endovascular Thrombectomy Device
,” IEEE Trans. Biomed. Eng.
, 54
(9
), pp. 1657
–1666
.99.
Haga
, Y.
, Mizushima
, M.
, Matsunaga
, T.
, and Esashi
, M.
, 2005
, “Medical and Welfare Applications of Shape Memory Alloy Microcoil Actuators
,” Smart Mater. Struct.
, 14
(5
), p. S266
.100.
Bossi
, S.
, Kammer
, S.
, Dörge
, T.
, Menciassi
, A.
, Hoffmann
, K. P.
, and Micera
, S.
, 2009
, “An Implantable Microactuated Intrafascicular Electrode for Peripheral Nerves
,” IEEE Trans. Biomed. Eng.
, 56
(11
), pp. 2701
–2706
.101.
Murad
, S.
, Murad
, J.
, and Khan
, H.
, 2013
, “A Smarter SMA Technology for the Realization of Drug Delivering Endoscopic Capsule
,” Rawal Med. J.
, 38
(1
), pp. 66
–74
.102.
Houston
, K.
, Eder
, C.
, Sieber
, A.
, Menciassi
, A.
, Carrozza
, M.
, and Dario
, P.
, 2007
, “Polymer Sensorised Microgrippers Using SMA Actuation
,” IEEE International Conference on Robotics and Automation
(ICRA
), Roma, Italy, Apr. 10–14, pp. 820
–825
.103.
Surbled
, P.
, Clerc
, C.
, Pioufle
, B. L.
, Ataka
, M.
, and Fujita
, H.
, 2001
, “Effect of the Composition and Thermal Annealing on the Transformation Temperatures of Sputtered TiNi Shape Memory Alloy Thin Films
,” Thin Solid Films
, 401
(12
), pp. 52
–59
.104.
Wang
, J.
, and Wang
, J.
, 2013
, “Shape Memory Effect of TiNi-Based Springs Trained by Constraint Annealing
,” Met. Mater. Int.
, 19
(2
), pp. 295
–301
.105.
Lin
, C.-M.
, Fan
, C.-H.
, and Lan
, C.-C.
, 2009
, “A Shape Memory Alloy Actuated Microgripper With Wide Handling Ranges
,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(AIM
), Singapore, July 14–17, pp. 12
–17
.106.
Bharanidaran
, R.
, and Ramesh
, T.
, 2014
, “Numerical Simulation and Experimental Investigation of a Topologically Optimized Compliant Microgripper
,” Sens. Actuators, A
, 205
, pp. 156
–163
.107.
Mackay
, R.
, Le
, H.
, and Keatch
, R.
, 2011
, “Design Optimisation and Fabrication of Su-8 Based Electro-Thermal Micro-Grippers
,” J. Micro-Nano Mechatronics
, 6
(1
), pp. 13
–22
.108.
Bechtold
, T.
, Rudnyi
, E. B.
, and Korvink
, J. G.
, 2005
, “Dynamic Electro-Thermal Simulation of Microsystems—A Review
,” J. Micromech. Microeng.
, 15
(11
), p. R17
.109.
Solano
, B.
, Merrell
, J.
, Gallant
, A.
, and Wood
, D.
, 2014
, “Modelling and Experimental Verification of Heat Dissipation Mechanisms in an Su-8 Electrothermal Microgripper
,” Microelectron. Eng.
, 124
, pp. 90
–93
.110.
Kwan
, A.
, Song
, S.
, Lu
, X.
, Lu
, L.
, Teh
, Y.-K.
, Teh
, Y.-F.
, Chong
, E.
, Gao
, Y.
, Hau
, W.
, Zeng
, F.
, Wong
, M.
, Huang
, C.
, Taniyama
, A.
, Makino
, Y.
, Nishino
, S.
, Tsuchiya
, T.
, and Tabata
, O.
, 2012
, “Improved Designs for an Electrothermal In-Plane Microactuator
,” J. Microelectromech. Syst.
, 21
(3
), pp. 586
–595
.111.
Shivhare
, P.
, Uma
, G.
, and Umapathy
, M.
, 2016
, “Design Enhancement of a Chevron Electrothermally Actuated Microgripper for Improved Gripping Performance
,” Microsyst. Technol.
, 22
(11
), pp. 2323
–2631
.112.
Benecke
, W.
, and Riethmuller
, W.
, 1989
, “Applications of Silicon Microactuators Based on Bimorph Structures
,” IEEE
Micro Electro Mechanical Systems: An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, Salt Lake City, UT, Feb. 20–22, pp. 116
–120
.113.
Yan
, D.
, Khajepour
, A.
, and Mansour
, R.
, 2003
, “Modeling of Two-Hot-Arm Horizontal Thermal Actuator
,” J. Micromech. Microeng.
, 13
(2
), p. 312
.114.
Comtois
, J. H.
, Bright
, V. M.
, and Phipps
, M. W.
, 1995
, “Thermal Microactuators for Surface-Micromachining Processes
,” Proc. SPIE
, 2642
, pp. 10
–21
.115.
Huang
, Q.-A.
, and Lee
, N. K. S.
, 1999
, “Analysis and Design of Polysilicon Thermal Flexure Actuator
,” J. Micromech. Microeng.
, 9
(1
), p. 64
.116.
Colinjivadi
, K. S.
, Lee
, J.-B.
, and Draper
, R.
, 2008
, “Viable Cell Handling With High Aspect Ratio Polymer Chopstick Gripper Mounted on a Nano Precision Manipulator
,” Microsyst. Technol.
, 14
(9
), pp. 1627
–1633
.117.
Chu
, L. L.
, Hetrick
, J. A.
, and Gianchandani
, Y. B.
, 2002
, “High Amplification Compliant Microtransmissions for Rectilinear Electrothermal Actuators
,” Sens. Actuators, A
, 97–98
, pp. 776
–783
.118.
Hsu
, C.-P.
, Liao
, T.
, and Hsu
, W.
, 2003
, “Electrothermally-Driven Long Stretch Micro Drive With Monolithic Cascaded Actuation Units in Compact Arrangement
,” 12th International Conference on TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems
, Boston, MA, June 8–12, Vol. 1
, pp. 348
–351
.119.
Venditti
, R.
, Lee
, J. S. H.
, Sun
, Y.
, and Li
, D.
, 2006
, “An In-Plane, Bi-Directional Electrothermal MEMS Actuator
,” J. Micromech. Microeng.
, 16
(10
), p. 2067
.120.
Nikoobin
, A.
, and Niaki
, M. H.
, 2011
, “Describing the Effective Parameters in Grippers, and Designing the Novel Micro-Nano Gripper
,” 2nd International Conference on Control, Instrumentation and Automation
(ICCIA
), Shiraz, Iran, Dec. 27–29, pp. 957
–963
.121.
Solano
, B. P.
, Gallant
, A. J.
, and Wood
, D.
, 2009
, “Design and Optimisation of a Microgripper: Demonstration of Biomedical Applications Using the Manipulation of Oocytes
,” Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS
(MEMS/MOEMS
), Rome, Italy, Apr. 1–3, pp. 61
–65
.122.
Bordatchev
, E. V.
, and Nikumb
, S. K.
, 2005
, “Electro-Thermally Driven Microgrippers for Micro-Electro-Mechanical Systems Applications
,” J. Micro/Nanolithogr., MEMS, MOEMS
, 4
(2
), p. 023011
.123.
Dow
, A. B. A.
, Jazizadeh
, B.
, Kherani
, N. P.
, and Rangelow
, I.
, 2011
, “Development and Modeling of an Electrothermally MEMS Microactuator With an Integrated Microgripper
,” J. Micromech. Microeng.
, 21
(12
), p. 125026
.124.
Que
, L.
, Park
, J. S.
, and Gianchandani
, Y. B.
, 1999
, “Bent-Beam Electro-Thermal Actuators for High Force Applications
,” 12th IEEE International Conference on Micro Electro Mechanical Systems
(MEMS'99
), Orlando, FL, Jan. 21, pp. 31
–36
.125.
Demaghsi
, H.
, Mirzajani
, H.
, and Ghavifekr
, H.
, 2014
, “Design and Simulation of a Novel Metallic Microgripper Using Vibration to Release Nano Objects Actively
,” Microsyst. Technol.
, 20
(1
), pp. 65
–72
.126.
Varona
, J.
, Saenz
, E.
, Fiscal-Woodhouse
, S.
, and Hamoui
, A.
, 2009
, “Design and Fabrication of a Novel Microgripper Based on Electrostatic Actuation
,” 52nd IEEE International Midwest Symposium on Circuits and Systems
(MWSCAS
), Cancun, Mexico, Aug. 2–5, pp. 827
–832
.127.
Geisberger
, A. A.
, and Sarkar
, N.
, 2006
, “Techniques in MEMS Microthermal Actuators and Their Applications
,” MEMS/NEMS Handbook Techniques and Applications
(Sensors and Actuators), Vol. 4
, Springer
, New York
, pp. 201
–261
.128.
Rakotondrabe
, M.
, and Ivan
, I.
, 2011
, “Development and Force/Position Control of a New Hybrid Thermo-Piezoelectric Microgripper Dedicated to Micromanipulation Tasks
,” IEEE Trans. Autom. Sci. Eng.
, 8
(4
), pp. 824
–834
.129.
Greminger
, M.
, Sezen
, A.
, and Nelson
, B.
, 2005
, “A Four Degree of Freedom MEMS Microgripper With Novel Bi-Directional Thermal Actuators
,” IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS
), Edmonton, AB, Canada, Aug. 2–6, pp. 2814
–2819
.130.
Kim
, D.-H.
, Lee
, M.-G.
, Kim
, B.
, and Shim
, J.-H.
, 2004
, “A Superelastic Alloy Microgripper With Embedded Electromagnetic Actuators and Piezoelectric Sensors
,” Proc. SPIE
, 5604
, pp. 230
–237
.131.
Madou
, M.
, 2002
, Fundamentals of Microfabrication: The Science of Miniaturization
, 2nd ed., Taylor & Francis
, Abingdon, UK
.132.
Park
, J.
, Kim
, S.
, Kim
, D.-H.
, Kim
, B.
, Kwon
, S. J.
, Park
, J.-O.
, and Lee
, K.-I.
, 2005
, “Identification and Control of a Sensorized Microgripper for Micromanipulation
,” IEEE/ASME Trans. Mechatronics
, 10
(5
), pp. 601
–606
.133.
Giouroudi
, I.
, Hötzendorfer
, H.
, Kosel
, J.
, Andrijasevic
, D.
, and Brenner
, W.
, 2008
, “Development of a Microgripping System for Handling of Microcomponents
,” Prec. Eng.
, 32
(2
), pp. 148
–152
.134.
Ikeda
, T.
, 1990
, Fundamentals of Piezoelectricity
, Oxford Science Publications, Oxford University Press
, Oxford, UK
.135.
Ouyang
, P. R.
, Tjiptoprodjo
, R. C.
, Zhang
, W. J.
, and Yang
, G. S.
, 2008
, “Micro-Motion Devices Technology: The State of Arts Review
,” Int. J. Adv. Manuf. Technol.
, 38
(5
), pp. 463
–478
.136.
Sun
, X.
, Chen
, W.
, Fatikow
, S.
, Tian
, Y.
, Zhou
, R.
, Zhang
, J.
, and Mikczinski
, M.
, 2015
, “A Novel Piezo-Driven Microgripper With a Large Jaw Displacement
,” Microsyst. Technol.
, 21
(4
), pp. 931
–942
.137.
Simmers
, G. E.
, Hodgkins
, J. R.
, Mascarenas
, D. D.
, Park
, G.
, and Sohn
, H.
, 2004
, “Improved Piezoelectric Self-Sensing Actuation
,” J. Intell. Mater. Syst. Struct.
, 15
(12
), pp. 941
–953
.138.
Ivan
, I. A.
, Rakotondrabe
, M.
, Lutz
, P.
, and Chaillet
, N.
, 2009
, “Quasistatic Displacement Self-Sensing Method for Cantilevered Piezoelectric Actuators
,” Rev. Sci. Instrum.
, 80
(6
), p. 065102
.139.
Mohamed
, Z.
, Abdullahi
, A. M.
, Ahmad
, M.
, and Husain
, A.
, 2014
, “Dynamic Hysteresis Based Modeling of Piezoelectric Actuators
,” J. Teknol.
, 67
(5
), pp. 9
–13
.140.
Niezrecki
, C.
, Brei
, D.
, Balakrishnan
, S.
, and Moskalik
, A.
, 2001
, “Piezoelectric Actuation: State of the Art
,” Shock Vib. Dig.
, 33
(4
), pp. 269
–280
.141.
Wang
, D.
, Yang
, Q.
, and Dong
, H.
, 2013
, “A Monolithic Compliant Piezoelectric-Driven Microgripper: Design, Modeling, and Testing
,” IEEE/ASME Trans. Mechatronics
, 18
(1
), pp. 138
–147
.142.
Chang
, R.
, and Chen
, C.
, 2007
, “Using Microgripper for Adhesive Bonding in Automatic Microassembly System
,” International Conference on Mechatronics and Automation
(ICMA
), Harbin, China, Aug. 5–8, pp. 440
–445
.143.
Xu
, Q.
, 2013
, “A New Compliant Microgripper With Integrated Position and Force Sensing
,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(AIM
), Wollongong, Australia, July 9–12, pp. 591
–596
.144.
Zubir
, M. N. M.
, and Shirinzadeh
, B.
, 2009
, “Development of a High Precision Flexure-Based Microgripper
,” Prec. Eng.
, 33
(4
), pp. 362
–370
.145.
Sun
, X.
, Chen
, W.
, Tian
, Y.
, Fatikow
, S.
, Zhou
, R.
, Zhang
, J.
, and Mikczinski
, M.
, 2013
, “A Novel Flexure-Based Microgripper With Double Amplification Mechanisms for Micro/Nano Manipulation
,” Rev. Sci. Instrum.
, 84
(8
), p. 085002
.146.
Blideran
, M. M.
, Bertsche
, G.
, Henschel
, W.
, and Kern
, D. P.
, 2006
, “A Mechanically Actuated Silicon Microgripper for Handling Micro- and Nanoparticles
,” Microelectron. Eng.
, 83
(4–9
), pp. 1382
–1385
.147.
Blideran
, M.
, Fleischer
, M.
, Grauvogel
, F.
, Löffler
, K.
, Langer
, M.
, and Kern
, D.
, 2008
, “Real-Time Gripping Detection for a Mechanically Actuated Microgripper
,” Microelectron. Eng.
, 85
(5–6
), pp. 1022
–1026
.148.
Chen
, T.
, Chen
, L.
, and Sun
, L.
, 2009
, “Piezoelectrically Driven Silicon Microgrippers Integrated With Sidewall Piezoresistive Sensor
,” IEEE International Conference on Robotics and Automation
(ICRA
), Kobe, Japan, May 12–17, pp. 2989
–2994
.149.
Chen
, T.
, Chen
, L.
, Sun
, L.
, and Li
, X.
, 2009
, “Design and Fabrication of a Four-Arm-Structure MEMS Gripper
,” IEEE Trans. Ind. Electron.
, 56
(4
), pp. 996
–1004
.150.
Jeon
, C.-S.
, Park
, J.-S.
, Lee
, S.-Y.
, and Moon
, C.-W.
, 2007
, “Fabrication and Characteristics of Out-of-Plane Piezoelectric Micro Grippers Using MEMS Processes
,” Thin Solid Films
, 515
(12
), pp. 4901
–4904
.151.
Jayaram
, K.
, and Joshi
, S. S.
, 2010
, “Development of a Flexure-Based, Force-Sensing Microgripper for Micro-Object Manipulation
,” J. Micromech. Microeng.
, 20
(1
), p. 015001
.152.
Kim
, B.-S.
, Park
, J.-S.
, Kang
, B. H.
, and Moon
, C.
, 2012
, “Fabrication and Property Analysis of a MEMS Micro-Gripper for Robotic Micro-Manipulation
,” Rob. Comput.-Integr. Manuf.
, 28
(1
), pp. 50
–56
.153.
Panepucci
, R. R.
, and Martinez
, J. A.
, 2008
, “Novel Su-8 Optical Waveguide Microgripper for Simultaneous Micromanipulation and Optical Detection
,” J. Vac. Sci. Technol. B
, 26
(6
), pp. 2624
–2627
.154.
Menciassi
, A.
, Eisinberg
, A.
, Mazzoni
, M.
, and Dario
, P.
, 2002
, “A Sensorized μelectro Discharge Machined Superelastic Alloy Microgripper for Micromanipulation: Simulation and Characterization
,” IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS
), Lausanne, Switzerland, Sept. 30–Oct. 4, Vol. 2
, pp. 1591
–1595
.155.
Choi
, H.-S.
, Lee
, D.-C.
, Kim
, S.-S.
, and Han
, C.-S.
, 2005
, “The Development of a Microgripper With a Perturbation-Based Configuration Design Method
,” J. Micromech. Microeng.
, 15
(6
), p. 1327
.156.
Choi
, H.
, Shin
, D.
, Ryuh
, Y.
, and Han
, C.
, 2011
, “Development of a Micro Manipulator Using a Microgripper and PZT Actuator for Microscopic Operations
,” IEEE International Conference on Robotics and Biomimetics
(ROBIO
), Karon Beach, Thailand, Dec. 7–11, pp. 744
–749
.157.
Smith
, C. S.
, 1954
, “Piezoresistive Effect in Germanium and Silicon
,” Phys. Rev.
, 94
(1
), pp. 42
–49
.158.
Barlian
, A. A.
, Park
, W. T.
, Mallon
, J. R.
, Rastegar
, A. J.
, and Pruitt
, B. L.
, 2009
, “Review: Semiconductor Piezoresistance for Microsystems
,” Proc. IEEE
, 97
(3
), pp. 513
–552
.159.
Kumar
, S. S.
, and Pant
, B. D.
, 2014
, “Design Principles and Considerations for the ‘Ideal’ Silicon Piezoresistive Pressure Sensor: A Focused Review
,” Microsyst. Technol.
, 20
(7
), pp. 1213
–1247
.160.
Tadigadapa
, S.
, and Mateti
, K.
, 2009
, “Piezoelectric MEMS Sensors: State-of-the-Art and Perspectives
,” Meas. Sci. Technol.
, 20
(9
), p. 092001
.161.
Gautschi
, G.
, 2002
, Piezoelectric Sensorics: Force Strain Pressure Acceleration and Acoustic Emission Sensors Materials and Amplifiers
, 1st ed., Springer-Verlag
, Berlin
.162.
Baxter
, L. K.
, 1997
, Capacitive Sensors: Design and Applications
, Wiley-IEEE Press
, New York
.163.
Shashank
, A.
, Tiwana
, M. I.
, Redmond
, S. J.
, and Lovell
, N. H.
, 2009
, “Design, Simulation and Fabrication of a Low Cost Capacitive Tactile Shear Sensor for a Robotic Hand
,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC
), Minneapolis, MN, Sept. 3–6, pp. 4132
–4135
.164.
Kim
, K.
, Liu
, X.
, Zhang
, Y.
, Cheng
, J.
, Yu Wu
, X.
, and Sun
, Y.
, 2009
, “Elastic and Viscoelastic Characterization of Microcapsules for Drug Delivery Using a Force-Feedback MEMS Microgripper
,” Biomed. Microdevices
, 11
(2
), pp. 421
–427
.165.
Brookhuis
, R.
, Lammerink
, T.
, Wiegerink
, R.
, de Boer
, M.
, and Elwenspoek
, M.
, 2012
, “3D Force Sensor for Biomechanical Applications
,” Sens. Actuators, A
, 182
, pp. 28
–33
.166.
Senturia
, S. D.
, 2000
, Microsystem Design
, Springer
, New York
.167.
Pantazi
, A.
, Sebastian
, A.
, Cherubini
, G.
, Lantz
, M.
, Pozidis
, H.
, Rothuizen
, H.
, and Eleftheriou
, E.
, 2007
, “Control of MEMS-Based Scanning-Probe Data-Storage Devices
,” IEEE Trans. Control Syst. Technol.
, 15
(5
), pp. 824
–841
.168.
Sebastian
, A.
, Pantazi
, A.
, Pozidis
, H.
, and Eleftheriou
, E.
, 2008
, “Nanopositioning for Probe-Based Data Storage [Applications of Control]
,” IEEE Control Syst.
, 28
(4
), pp. 26
–35
.169.
Sebastian
, A.
, and Wiesmann
, D.
, 2008
, “Modeling and Experimental Identification of Silicon Microheater Dynamics: A Systems Approach
,” J. Microelectromech. Syst.
, 17
(4
), pp. 911
–920
.170.
Sebastian
, A.
, and Pantazi
, A.
, 2012
, “Nanopositioning With Multiple Sensors: A Case Study in Data Storage
,” IEEE Trans. Control Syst. Technol.
, 20
(2
), pp. 382
–394
.171.
Zhu
, Y.
, Moheimani
, S. O. R.
, and Yuce
, M. R.
, 2011
, “Simultaneous Capacitive and Electrothermal Position Sensing in a Micromachined Nanopositioner
,” IEEE Electron Device Lett.
, 32
(8
), pp. 1146
–1148
.172.
Greminger
, M. A.
, and Nelson
, B. J.
, 2004
, “Vision-Based Force Measurement
,” IEEE Trans. Pattern Anal. Mach. Intell.
, 26
(3
), pp. 290
–298
.173.
Cappelleri
, D. J.
, Piazza
, G.
, and Kumar
, V.
, 2009
, “Two-Dimensional, Vision-Based μN Force Sensor for Microrobotics
,” IEEE International Conference on Robotics and Automation
(ICRA
), Kobe, Japan, May 12–17, pp. 1016
–1021
.174.
Chang, R. J. and Chen, C. C., 2010, “
Using Microgripper in Development of Automatic Adhesive Glue Transferring and Binding Microassembly System
,” Engineering
, 2
, pp. 1–11.175.
Giouroudi
, I.
, Hötzendorfer
, H.
, Andrijasevic
, D.
, Ferros
, M.
, and Brenner
, W.
, 2006
, “Design of a Microgripping System With Visual and Force Feedback for MEMS Applications
,” Institution of Engineering and Technology Seminar on MEMS Sensors and Actuators
(ICEPT
), London, UK, Apr. 28, pp. 243
–250
.176.
Belfiore
, N. P.
, and Simeone
, P.
, 2013
, “Inverse Kinetostatic Analysis of Compliant Four-Bar Linkages
,” Mech. Mach. Theory
, 69
, pp. 350
–372
.177.
Verotti
, M.
, Crescenzi
, R.
, Balucani
, M.
, and Belfiore
, N. P.
, 2015
, “MEMS-Based Conjugate Surfaces Flexure Hinge
,” ASME J. Mech. Des.
, 137
(1
), p. 012301
.178.
Belfiore
, N. P.
, 2014
, “Functional Synthesis of a New Class of Micro Electro-Mechanical Systems
,” Advances in Soft Computing, Intelligent Robotics and Control
(Topics in Intelligent Engineering and Informatics), Vol. 8
, J.
Fodor
and R.
Fullér
, eds., Springer Science and Business Media
, Cham, Switzerland
, pp. 81
–93
.179.
Verotti
, M.
, 2016
, “Analysis of the Center of Rotation in Primitive Flexures: Uniform Cantilever Beams With Constant Curvature
,” Mech. Mach. Theory
, 97
, pp. 29
–50
.180.
Borovic
, B.
, Liu
, A. Q.
, Popa
, D.
, Cai
, H.
, and Lewis
, F. L.
, 2005
, “Open-Loop Versus Closed-Loop Control of MEMS Devices: Choices and Issues
,” J. Micromech. Microeng.
, 15
(10
), p. 1917
.181.
Messenger
, R.
, Aten
, Q.
, McLain
, T.
, and Howell
, L.
, 2009
, “Piezoresistive Feedback Control of a MEMS Thermal Actuator
,” J. Microelectromech. Syst.
, 18
(6
), pp. 1267
–1278
.182.
Komati
, B.
, Rabenorosoa
, K.
, Clevy
, C.
, and Lutz
, P.
, 2013
, “Automated Guiding Task of a Flexible Micropart Using a Two-Sensing-Finger Microgripper
,” IEEE Trans. Autom. Sci. Eng.
, 10
(3
), pp. 515
–524
.183.
Xu
, Q.
, 2014
, “Design and Smooth Position/Force Switching Control of a Miniature Gripper for Automated Microhandling
,” IEEE Trans. Ind. Inf.
, 10
(2
), pp. 1023
–1032
.184.
Raibert
, M.
, and Craig
, J.
, 1981
, “Hybrid Position/Force Control of Manipulators
,” ASME J. Dyn. Syst. Meas. Control
, 103
(2
), pp. 126
–133
.185.
Perdereau
, V.
, and Drouin
, M.
, 1993
, “A New Scheme for Hybrid Force-Position Control
,” Robotica
, 11
(5
), pp. 453
–464
.186.
Seraji
, H.
, and Colbaugh
, R.
, 1997
, “Force Tracking in Impedance Control
,” Int. J. Rob. Res.
, 16
(1
), pp. 97
–117
.187.
Rabenorosoa
, K.
, Clevy
, C.
, and Lutz
, P.
, 2010
, “Hybrid Force/Position Control Applied to Automated Guiding Tasks at the Microscale
,” IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS
), Taipei, Taiwan, Oct. 18–22, pp. 4366
–4371
.188.
Xu
, Q.
, 2013
, “Adaptive Discrete-Time Sliding Mode Impedance Control of a Piezoelectric Microgripper
,” IEEE Trans. Rob.
, 29
(3
), pp. 663
–673
.189.
Fisher
, W. D.
, and Mujtaba
, M.
, 1992
, “Hybrid Position/Force Control: A Correct Formulation
,” Int. J. Rob. Res.
, 11
(4
), pp. 299
–311
.190.
Xu
, Q.
, 2015
, “Robust Impedance Control of a Compliant Microgripper for High-Speed Position/Force Regulation
,” IEEE Trans. Ind. Electron.
, 62
(2
), pp. 1201
–1209
.191.
Verotti
, M.
, Dochshanov
, A.
, and Belfiore
, N.
, 2017
, “Compliance Synthesis of CSFH MEMS-Based Microgrippers
,” ASME J. Mech. Des.
, 139
(2
), p. 022301
.192.
Belfiore
, N.
, Verotti
, M.
, and Consorti
, L.
, 2010
, “Comparative Analysis of Isotropy Indices in RR and RRP Arms
,” Int. J. Mech. Control
, 11
(1
), pp. 3
–12
.193.
Belfiore
, N.
, Di Giamberardino
, P.
, Rudas
, I.
, and Verotti
, M.
, 2011
, “Isotropy in Any RR Planar Dyad Under Active Joint Stiffness Regulation
,” Int. J. Mech. Control
, 12
(1
), pp. 75
–81
.194.
Belfiore
, N. P.
, Verotti
, M.
, Di Giamberardino
, P.
, and Rudas
, I. J.
, 2012
, “Active Joint Stiffness Regulation to Achieve Isotropic Compliance in the Euclidean Space
,” ASME J. Mech. Rob.
, 4
(4
), p. 041010
.195.
Verotti
, M.
, and Belfiore
, N. P.
, 2016
, “Isotropic Compliance in E(3): Feasibility and Workspace Mapping
,” ASME J. Mech. Rob.
, 8
(6
), p. 061005
.196.
Verotti
, M.
, Masarati
, P.
, Morandini
, M.
, and Belfiore
, N.
, 2016
, “Isotropic Compliance in the Special Euclidean Group SE(3)
,” Mech. Mach. Theory
, 98
, pp. 263
–281
.197.
Balucani
, M.
, Belfiore
, N. P.
, Crescenzi
, R.
, and Verotti
, M.
, 2011
, “The Development of a MEMS/NEMS-Based 3 DOF Compliant Micro Robot
,” Int. J. Mech. Control
, 12
(1
), pp. 3
–10
.198.
Balucani
, M.
, Belfiore
, N.
, Crescenzi
, R.
, Genua
, M.
, and Verotti
, M.
, 2011
, “Developing and Modeling a Plane 3 DOF Compliant Micromanipulator by Means of a Dedicated MBS Code
,” NSTI Nanotechnology Conference and Expo
(NSTI-Nanotech
), Boston, MA, June 13–16, Vol. 2
, pp. 659
–662
.199.
Belfiore
, N. P.
, Balucani
, M.
, Crescenzi
, R.
, and Verotti
, M.
, 2012
, “Performance Analysis of Compliant MEMS Parallel Robots Through Pseudo-Rigid-Body Model Synthesis
,” ASME
Paper No. ESDA2012-82636.200.
Belfiore
, N. P.
, EmamiMeibodi
, M.
, Verotti
, M.
, Crescenzi
, R.
, Balucani
, M.
, and Nenzi
, P.
, 2013
, “Kinetostatic Optimization of a MEMS-Based Compliant 3 DOF Plane Parallel Platform
,” IEEE 9th International Conference on Computational Cybernetics
(ICCC
), Tihany, Hungary, July 8–10, pp. 26
–266
.201.
Belouschek
, P.
, Lorenz
, D.
, and Adamczyk
, Z.
, 1991
, “Calculation of Electrostatic Interaction Forces Between Ellipsoidal Particles
,” Colloid Polym. Sci.
, 269
(5
), pp. 528
–531
.202.
Sitti
, M.
, Horiguchi
, S.
, and Hashimoto
, H.
, 1999
, “Tele-Touch Feedback of Surfaces at the Micro/Nano Scale: Modeling and Experiments
,” IEEE International Conference on Intelligent Robots and Systems
(IROS
), Kyongju, South Korea, Oct. 17–21, Vol. 2
, pp. 882
–888
.203.
Gorman
, J.
, and Shapiro
, B.
, 2011
, Feedback Control of MEMS to Atoms (MEMS Reference Shelf)
, Springer Science & Business Media
, New York
.204.
Lu
, M.-C.
, and Fedder
, G.
, 2004
, “Position Control of Parallel-Plate Microactuators for Probe-Based Data Storage
,” J. Microelectromech. Syst.
, 13
(5
), pp. 759
–769
.205.
Bryzek
, J.
, Abbott
, H.
, Flannery
, A.
, Cagle
, D.
, and Maitan
, J.
, 2003
, “Control Issues for MEMS
,” 42nd IEEE Conference on Decision and Control
(CDC
), Maui, HI, Dec. 9–12, Vol. 3
, pp. 3039
–3047
.206.
Burns
, D.
, and Bright
, V.
, 1997
, “Nonlinear Flexures for Stable Deflection of an Electrostatically Actuated Micromirror
,” Proc. SPIE
, 3226
, pp. 125
–136
.207.
Seeger
, J. I.
, and Crary
, S. B.
, 1997
, “Stabilization of Electrostatically Actuated Mechanical Devices
,” International Conference on Solid-State Sensors and Actuators
(TRANSDUCERS
), Chicago, IL, June 19, Vol. 2
, pp. 1133
–1136
.208.
Zhang
, W. M.
, Yan
, H.
, Peng
, Z. K.
, and Meng
, G.
, 2014
, “Electrostatic Pull-In Instability in MEMS/NEMS: A Review
,” Sens. Actuators, A
, 214
, pp. 187
–218
.209.
Chen
, C.
, 1999
, Linear System Theory and Design
, Oxford University Press
, Oxford, UK
.210.
Cheung
, P.
, Horowitz
, R.
, and Howe
, R.
, 1996
, “Design, Fabrication, Position Sensing, and Control of an Electrostatically-Driven Polysilicon Microactuator
,” IEEE Trans. Magn.
, 32
(1
), pp. 122
–128
.211.
Vagia
, M.
, and Tzes
, A.
, 2008
, “Robust PID Control Design for an Electrostatic Micromechanical Actuator With Structured Uncertainty
,” IET Control Theory Appl.
, 2
(5
), pp. 365
–373
.212.
Hung
, E.
, and Senturia
, S.
, 1999
, “Extending the Travel Range of Analog-Tuned Electrostatic Actuators
,” J. Microelectromech. Syst.
, 8
(4
), pp. 497
–505
.213.
Piyabongkarn
, D.
, Sun
, Y.
, Rajamani
, R.
, Sezen
, A.
, and Nelson
, B.
, 2005
, “Travel Range Extension of a MEMS Electrostatic Microactuator
,” IEEE Trans. Control Syst. Technol.
, 13
(1
), pp. 138
–145
.214.
Zhu
, G.
, Penet
, J.
, and Saydy
, L.
, 2006
, “Robust Control of an Electrostatically Actuated MEMS in the Presence of Parasitics and Parametric Uncertainties
,” American Control Conference
(ACC
), Minneapolis, MN, June 14–16, p. 6
.215.
Zhu
, G.
, Levine
, J.
, and Praly
, L.
, 2005
, “Improving the Performance of an Electrostatically Actuated MEMS by Nonlinear Control: Some Advances and Comparisons
,” 44th IEEE Conference on Decision and Control and European Control Conference
(CDC-ECC
), Seville, Spain, Dec. 15, pp. 7534
–7539
.216.
Boudaoud
, M.
, Le Gorrec
, Y.
, Haddab
, Y.
, and Lutz
, P.
, 2015
, “Gain Scheduling Control of a Nonlinear Electrostatic Microgripper: Design by an Eigenstructure Assignment With an Observer-Based Structure
,” IEEE Trans. Control Syst. Technol.
, 23
(4
), pp. 1255
–1267
.217.
Tan
, X.
, and Baras
, J. S.
, 2005
, “Adaptive Identification and Control of Hysteresis in Smart Materials
,” IEEE Trans. Autom. Control
, 50
(6
), pp. 827
–839
.218.
Reynaerts
, D.
, and Van Brussel
, H.
, 1998
, “Design Aspects of Shape Memory Actuators
,” Mechatronics
, 8
(6
), pp. 635
–656
.219.
Gorbet
, R.
, and Wang
, D.
, 1995
, “General Stability Criteria for a Shape Memory Alloy Position Control System
,” IEEE International Conference on Robotics and Automation
(ICRA
), Nagoya, Japan, May 21–27, Vol. 3
, pp. 2313
–2319
.220.
Minase
, J.
, Lu
, T.-F.
, Cazzolato
, B.
, and Grainger
, S.
, 2010
, “A Review, Supported by Experimental Results, of Voltage, Charge and Capacitor Insertion Method for Driving Piezoelectric Actuators
,” Prec. Eng.
, 34
(4
), pp. 692
–700
.221.
Gu
, G.-Y.
, Zhu
, L.-M.
, Su
, C.-Y.
, and Ding
, H.
, 2013
, “Motion Control of Piezoelectric Positioning Stages: Modeling, Controller Design, and Experimental Evaluation
,” IEEE/ASME Trans. Mechatronics
, 18
(5
), pp. 1459
–1471
.222.
Ru
, C. H.
, Pang
, B. H.
, Wang
, K. J.
, and Ye
, X. F.
, 2006
, “Adaptive Identification and Control of Hysteresis for Piezoelectric Actuator
,” International Conference on Machine Learning and Cybernetics
, Dalian, China, Aug. 13–16, pp. 2834
–2839
.223.
Grossard
, M.
, Boukallel
, M.
, Chaillet
, N.
, and Rotinat-Libersa
, C.
, 2011
, “Modeling and Robust Control Strategy for a Control-Optimized Piezoelectric Microgripper
,” IEEE/ASME Trans. Mechatronics
, 16
(4
), pp. 674
–683
.224.
Xu
, Q.
, 2013
, “Precision Position/Force Interaction Control of a Piezoelectric Multimorph Microgripper for Microassembly
,” IEEE Trans. Autom. Sci. Eng.
, 10
(3
), pp. 503
–514
.225.
Jain
, R. K.
, Majumder
, S.
, Ghosh
, B.
, and Saha
, S.
, 2015
, “Design and Manufacturing of Mobile Micro Manipulation System With a Compliant Piezoelectric Actuator Based Micro Gripper
,” J. Manuf. Syst.
, 35
(6
), pp. 76
–91
.226.
Arai
, F.
, Andou
, D.
, and Fukuda
, T.
, 1996
, “Adhesion Forces Reduction for Micro Manipulation Based on Micro Physics
,” The Ninth Annual International Workshop on Micro Electro Mechanical Systems (MEMS
): An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems
, Sam Diego, CA, Feb. 11–15, pp. 354
–359
.227.
Zhou
, Y.
, and Nelson
, B.
, 2000
, “The Effect of Material Properties and Gripping Force on Micrograsping
,” IEEE International Conference on Robotics and Automation
(ICRA
), San Francisco, CA, Apr. 24–28, Vol. 2
, pp. 1115
–1120
.228.
Zhou
, Y.
, and Nelson
, B. J.
, 1998
, “Adhesion Force Modeling and Measurement for Micromanipulation
,” Proc. SPIE
, 3519
, pp. 169
–180
.229.
Tarhan
, M. C.
, Lafitte
, N.
, Tauran
, Y.
, Jalabert
, L.
, Kumemura
, M.
, Perret
, G.
, Kim
, B.
, Coleman
, A. W.
, Fujita
, H.
, and Collard
, D.
, 2016
, “A Rapid and Practical Technique for Real-Time Monitoring of Biomolecular Interactions Using Mechanical Responses of Macromolecules
,” Sci. Rep.
, 6
(1
), p. 28001
.230.
Amjad
, K.
, Bazaz
, S.
, and Lai
, Y.
, 2008
, “Design of an Electrostatic MEMS Microgripper System Integrated With Force Sensor
,” International Conference on Microelectronics
(ICM
), Dec. 14–17, pp. 236
–239
.231.
Jia
, Y.
, and Xu
, Q.
, 2013
, “Design of a Monolithic Dual-Axis Electrostatic Actuation MEMS Microgripper With Capacitive Position/Force Sensors
,” 13th IEEE Conference on Nanotechnology
(IEEE-NANO
), Beijing, China, Aug. 5–8, pp. 817
–820
.232.
Legtenberg
, R.
, Groeneveld
, A. W.
, and Elwenspoek
, M.
, 1996
, “Comb-Drive Actuators for Large Displacements
,” J. Micromech. Microeng.
, 6
(3
), p. 320
.233.
Cecchi
, R.
, Verotti
, M.
, Capata
, R.
, Dochshanov
, A.
, Broggiato
, G.
, Crescenzi
, R.
, Balucani
, M.
, Natali
, S.
, Razzano
, G.
, Lucchese
, F.
, Bagolini
, A.
, Bellutti
, P.
, Sciubba
, E.
, and Belfiore
, N. P.
, 2015
, “Development of Micro-Grippers for Tissue and Cell Manipulation With Direct Morphological Comparison
,” Micromachines
, 6
(11
), pp. 1710
–1728
.234.
Belfiore
, N.
, Broggiato
, G.
, Verotti
, M.
, Balucani
, M.
, Crescenzi
, R.
, Bagolini
, A.
, Bellutti
, P.
, and Boscardin
, M.
, 2015
, “Simulation and Construction of a MEMS CSFH Based Microgripper
,” Int. J. Mech. Control
, 16
(1
), pp. 21
–30
.235.
Voicu
, R.
, Muller
, R.
, and Eftime
, L.
, 2008
, “Design Optimization for an Electro-Thermally Actuated Polymeric Microgripper
,” Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (MEMS/MOEMS
), Nice, France, Apr. 9–11, pp. 182
–186
.236.
Huang
, S.-C.
, and Chen
, W.-L.
, 2008
, “Design of Topologically Optimal Microgripper
,” IEEE International Conference on Systems, Man and Cybernetics
(SMC
), Singapore, Oct. 12–15, pp. 1694
–1698
.237.
Keller
, C. G.
, and Howe
, R. T.
, 1997
, “Hexsil Tweezers for Teleoperated Micro-Assembly
,” 10th Annual International Workshop on Micro Electro Mechanical Systems
(MEMS
), Nagoya, Japan, Jan. 26–30, pp. 72
–77
.238.
Zheng
, X.
, Kim
, J.-K.
, and Lee
, D.-W.
, 2011
, “Design and Fabrication of a Novel Microgripper With Four-Point Contact Fingers
,” J. Vac. Sci. Technol., A
, 29
(1
), p. 011007
.239.
Elbuken
, C.
, Gui
, L.
, Ren
, C. L.
, Yavuz
, M.
, and Khamesee
, M. B.
, 2008
, “Design and Analysis of a Polymeric Photo-Thermal Microactuator
,” Sens. Actuators, A
, 147
(1
), pp. 292
–299
.240.
Huang
, S.-C.
, Lee
, C.-M.
, Chiu
, C.-C.
, and Chen
, W.-L.
, 2006
, “Topology Optimal Compliant Microgripper
,” JSME Int. J., Ser. A
, 49
(4
), pp. 589
–596
.241.
Lu
, K.
, Zhang
, J.
, Chen
, W.
, Jiang
, J.
, and Chen
, W.
, 2014
, “A Monolithic Microgripper With High Efficiency and High Accuracy for Optical Fiber Assembly
,” IEEE 9th Conference on Industrial Electronics and Applications
(ICIEA
), Hangzhou, China, June 9–11, pp. 1942
–1947
.242.
Ballandras
, S.
, Basrour
, S.
, Robert
, L.
, Megtert
, S.
, Blind
, P.
, Rouillay
, M.
, Bernéde
, P.
, and Daniau
, W.
, 1997
, “Microgrippers Fabricated by the {LIGA} Technique
,” Sens. Actuators, A
, 58
(3
), pp. 265
–272
.243.
Zhang
, D.
, Zhang
, Z.
, Gao
, Q.
, Xu
, D.
, and Liu
, S.
, 2015
, “Development of a Monolithic Compliant SPCA-Driven Micro-Gripper
,” Mechatronics
, 25
, pp. 37
–43
.244.
Wu
, Z.
, and Li
, Y.
, 2014
, “Design, Modeling, and Analysis of a Novel Microgripper Based on Flexure Hinges
,” Adv. Mech. Eng.
, 6
, p. 47584
.245.
Ai
, W.
, and Xu
, Q.
, 2014
, “New Structure Design of a Flexure-Based Compliant Microgripper
,” IEEE International Conference on Robotics and Biomimetics
(ROBIO
), Bali, Indonesia, Dec. 5–10, pp. 2588
–2593
.246.
Ai
, W.
, and Xu
, Q.
, 2014
, “New Structural Design of a Compliant Gripper Based on the Scott-Russell Mechanism
,” Int. J. Adv. Rob. Syst.
, 11
(12
), p. 192
.247.
Kurita
, Y.
, Sugihara
, F.
, Ueda
, J.
, and Ogasawara
, T.
, 2012
, “Piezoelectric Tweezer-Type End Effector With Force- and Displacement-Sensing Capability
,” IEEE/ASME Trans. Mechatronics
, 17
(6
), pp. 1039
–1048
.Copyright © 2017 by ASME
You do not currently have access to this content.