Abstract

Uncertainty analysis is an effective methodology to acquire the variability of composite material properties. However, it is hard to apply hierarchical multiscale uncertainty analysis to the complex composite materials due to both quantification and propagation difficulties. In this paper, a novel hierarchical framework combined R-vine copula with sparse polynomial chaos expansions is proposed to handle multiscale uncertainty analysis problems. According to the strength of correlations, two different strategies are proposed to complete the uncertainty quantification and propagation. If the variables are weakly correlated or mutually independent, Rosenblatt transformation is used directly to transform non-normal distributions into the standard normal distributions. If the variables are strongly correlated, the multidimensional joint distribution is obtained by constructing R-vine copula, and Rosenblatt transformation is adopted to generalize independent standard variables. Then, the sparse polynomial chaos expansion is used to acquire the uncertainties of outputs with relatively few samples. The statistical moments of those variables that act as the inputs of next upscaling model can be gained analytically and easily by the polynomials. The analysis process of the proposed hierarchical framework is verified by the application of a 3D woven composite material system. Results show that the multidimensional correlations are modeled accurately by the R-vine copula functions, and thus uncertainty propagations with the transformed variables can be done to obtain the computational results with consideration of uncertainties accurately and efficiently.

References

1.
Liu
,
Z.
,
Zhu
,
C.
,
Zhu
,
P.
, and
Chen
,
W.
,
2018
, “
Reliability-Based Design Optimization of Composite Battery Box Based on Modified Particle Swarm Optimization Algorithm
,”
Compos. Struct.
,
204
, pp.
239
255
. 10.1016/j.compstruct.2018.07.053
2.
Bostanabad
,
R.
,
Liang
,
B.
,
Gao
,
J. Y.
,
Liu
,
W. K.
,
Cao
,
J.
,
Zeng
,
D.
,
Sun
,
X.
,
Xu
,
H.
,
Li
,
Y.
, and
Chen
,
W.
,
2018
, “
Uncertainty Quantification in Multiscale Simulation of Woven Fiber Composites
,”
Comput. Meth. Appl. Mech. Eng.
,
338
, pp.
506
532
. 10.1016/j.cma.2018.04.024
3.
Wang
,
Y.
,
2011
, “
Multiscale Uncertainty Quantification Based on a Generalized Hidden Markov Model
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031004
. 10.1115/1.4003537
4.
Tao
,
W.
,
Liu
,
Z.
,
Zhu
,
P.
,
Zhu
,
C.
, and
Chen
,
W.
,
2017
, “
Multi-Scale Design of Three Dimensional Woven Composite Automobile Fender Using Modified Particle Swarm Optimization Algorithm
,”
Compos. Struct.
,
181
, pp.
73
83
. 10.1016/j.compstruct.2017.08.065
5.
Balokas
,
G.
,
Czichon
,
S.
, and
Rolfes
,
R.
,
2018
, “
Neural Network Assisted Multiscale Analysis for the Elastic Properties Prediction of 3D Braided Composites Under Uncertainty
,”
Compos. Struct.
,
183
, pp.
550
562
. 10.1016/j.compstruct.2017.06.037
6.
Liu
,
Y.
,
Shi
,
Y.
,
Zhou
,
Q.
, and
Xiu
,
R. Q.
,
2016
, “
A Sequential Sampling Strategy to Improve the Global Fidelity of Metamodels in Multi-Level System Design
,”
Struct. Multidiscip. Optim.
,
53
(
6
), pp.
1295
1313
. 10.1007/s00158-015-1379-9
7.
Ademiloye
,
A. S.
,
Zhang
,
L. W.
, and
Liew
,
K. M.
,
2018
, “
A Multiscale Framework for Large Deformation Modeling of RBC Membranes
,”
Comput. Meth. Appl. Mech. Eng.
,
329
, pp.
144
167
. 10.1016/j.cma.2017.10.004
8.
Chen
,
Z. X.
,
Huang
,
T. Y.
,
Shao
,
Y. M.
,
Li
,
Y.
,
Xu
,
H.
,
Avery
,
K.
,
Zeng
,
D.
,
Chen
,
W.
, and
Su
,
X.
,
2017
, “
Multiscale Finite Element Modeling of Sheet Molding Compound (SMC) Composite Structure Based on Stochastic Mesostructured Reconstruction
,”
Compos. Struct.
,
188
, pp.
25
38
. 10.1016/j.compstruct.2017.12.039
9.
Yin
,
X. L.
,
Lee
,
S. H.
,
Chen
,
W.
, and
Liu
,
W. K.
,
2009
, “
Efficient Random Field Uncertainty Propagation in Design Using Multiscale Analysis
,”
ASME J. Mech. Des.
,
131
(
2
), p.
021006
. 10.1115/1.3042159
10.
Wirtz
,
D.
,
Karajan
,
N.
, and
Haasdonk
,
B.
,
2014
, “
Surrogate Modeling of Multiscale Models Using Kernel Methods
,”
Int. J. Numer. Methods Eng.
,
101
(
1
), pp.
1
28
. 10.1002/nme.4767
11.
Said
,
B. E.
, and
Hallett
,
S. R.
,
2018
, “
Multiscale Surrogate Modeling of the Elastic Response of Thick Composite Structures With Embedded Defects and Features
,”
Compos. Struct.
,
200
, pp.
781
798
. 10.1016/j.compstruct.2018.05.078
12.
Liu
,
Y.
,
Yin
,
X. L.
,
Arendt
,
P.
,
Chen
,
W.
, and
Huang
,
H. Z.
,
2010
, “
A Hierarchical Statistical Sensitivity Analysis Method for Multilevel Systems With Shared Variables
,”
ASME J. Mech. Des.
,
132
(
3
), p.
031006
. 10.1115/1.4001211
13.
Sklar
,
M.
,
1959
,
Fonctions de Répartition à n Dimensions et Leurs Marges
,
Publications de l’Institut de Statistique de L’Universit´e de Paris 8
, pp.
229
231
.
14.
Torre
,
E.
,
Marelli
,
S.
,
Embrechts
,
P.
, and
Sudret
,
B.
,
2018
, “
A General Framework for Data-Driven Uncertainty Quantification Under Complex Dependencies Using Vine Copulas
,”
Probab. Eng. Mech.
,
55
, pp.
1
16
. 10.1016/j.probengmech.2018.08.001
15.
Tang
,
X. S.
,
Li
,
D. Q.
,
Zhou
,
C. B.
,
Phoon
,
K. K.
, and
Zhang
,
L. M.
,
2013
, “
Impact of Copulas for Modeling Bivariate Distributions on System Reliability
,”
Struct. Saf.
,
44
, pp.
80
90
. 10.1016/j.strusafe.2013.06.004
16.
Wang
,
F.
, and
Li
,
H.
,
2018
, “
Distribution Modeling for Reliability Analysis: Impact of Multiple Dependences and Probability Model Selection
,”
Appl. Math. Modell.
,
59
, pp.
483
499
. 10.1016/j.apm.2018.01.035
17.
Jiang
,
C.
,
Zhang
,
W.
,
Han
,
X.
, and
Song
,
L. J.
,
2015
, “
A Vine-Copula Based Reliability Analysis Method for Structures With Multidimensional Correlation
,”
ASME J. Mech. Des.
,
137
(
6
), p.
061405
. 10.1115/1.4030179
18.
Wang
,
P.
,
Lu
,
Z. Z.
,
Zhang
,
K. C.
,
Xiao
,
S. N.
, and
Yue
,
D. J.
,
2018
, “
Copula-Based Decomposition Approach for the Derivative-Based Sensitivity of Variance Contributions With Dependent Variables
,”
Reliab. Eng. Syst.Saf.
,
169
, pp.
437
450
. 10.1016/j.ress.2017.09.012
19.
Cui
,
X. Y.
,
Hu
,
X. B.
, and
Zeng
,
Y.
,
2017
, “
A Copula-Based Perturbation Stochastic Method for Fiber-Reinforced Composite Structures With Correlations
,”
Comput. Meth. Appl. Mech. Eng.
,
322
, pp.
351
372
. 10.1016/j.cma.2017.05.001
20.
Mehrez
,
L.
,
Fish
,
J.
,
Aitharaju
,
V.
,
Rodgers
,
W.
, and
Ghanem
,
R.
,
2018
, “
A PCE-Based Multiscale Framework for the Characterization of Uncertainties in Complex Systems
,”
Comput. Mech.
,
61
(
1–2
), pp.
219
236
. 10.1007/s00466-017-1502-4
21.
Chen
,
X.
, and
Qiu
,
Z. P.
,
2018
, “
A Novel Uncertainty Analysis Method for Composite Structures With Mixed Uncertainties Including Random and Interval Variables
,”
Compos. Struct.
,
184
, pp.
400
410
. 10.1016/j.compstruct.2017.09.068
22.
Sasikumar
,
P.
,
Venketeswaran
,
A.
,
Suresh
,
R.
, and
Gupta
,
S.
,
2015
, “
A Data Driven Polynomial Chaos Based Approach for Stochastic Analysis of CFRP Laminated Composite Plates
,”
Compos. Struct.
,
125
, pp.
212
227
. 10.1016/j.compstruct.2015.02.010
23.
Blatman
,
G.
, and
Sudret
,
B.
,
2011
, “
Adaptive Sparse Polynomial Chaos Expansion Based on Least Angle Regression
,”
J. Comput. Phys.
,
230
(
6
), pp.
2345
2367
. 10.1016/j.jcp.2010.12.021
24.
Abraham
,
S.
,
Raisee
,
M.
,
Ghorbaniasl
,
G.
,
Contino
,
F.
, and
Lacor
,
C.
,
2017
, “
A Robust and Efficient Stepwise Regression Method for Building Sparse Polynomial Chaos Expansions
,”
J. Comput. Phys.
,
332
, pp.
461
474
. 10.1016/j.jcp.2016.12.015
25.
Shao
,
Q.
,
Younes
,
A.
,
Fahs
,
M.
, and
Mara
,
T. A.
,
2017
, “
Bayesian Sparse Polynomial Chaos Expansions for Global Sensitivity Analysis
,”
Comput. Meth. Appl. Mech. Eng.
,
318
, pp.
474
496
. 10.1016/j.cma.2017.01.033
26.
Cheng
,
K.
, and
Lu
,
Z. Z.
,
2018
, “
Adaptive Sparse Polynomial Chaos Expansions for Global Sensitivity Analysis Based on Support Vector Regression
,”
Comput. Struct.
,
194
, pp.
86
96
. 10.1016/j.compstruc.2017.09.002
27.
Diaz
,
P.
,
Doostan
,
A.
, and
Hampton
,
J.
,
2018
, “
Sparse Polynomial Chaos Expansions via Compressed Sensing and D-Optimal Design
,”
Comput. Appl. Mech. Eng.
,
336
, pp.
640
666
. 10.1016/j.cma.2018.03.020
28.
Bedford
,
B. T.
, and
Cooke
,
R. M.
,
2002
, “
Vines—A New Graphical Model for Dependent Random Variables
,”
Ann. Stat.
,
30
(
4
), pp.
1031
1068
. 10.1214/aos/1031689016
29.
Dissman
,
J.
,
Brechmann
,
E. C.
,
Czado
,
C.
, and
Kurowicka
,
D.
,
2013
, “
Selecting and Estimating Regular Vine Copulae and Application to Financial Returns
,”
Comput. Stat. Data Anal.
,
59
, pp.
52
69
. 10.1016/j.csda.2012.08.010
30.
Schepsmeier
,
U.
,
2015
, “
Efficient Information Based Goodness-of-Fit Tests for Vine Copula Models With Flexible Margins
,”
J. Multivar. Anal.
,
138
, pp.
34
52
. 10.1016/j.jmva.2015.01.001
31.
Liu
,
J.
,
Meng
,
X. H.
,
Xu
,
C.
,
Zhang
,
D. Q.
, and
Jiang
,
C.
,
2018
, “
Forward and Inverse Structural Uncertainty Propagations Under Stochastic Variables With Arbitrary Probability Distributions
,”
Comput. Meth. Appl. Mech. Eng.
,
342
, pp.
287
320
. 10.1016/j.cma.2018.07.035
32.
Liu
,
J.
,
Sun
,
X.
,
Han
,
X.
,
Jiang
,
C.
, and
Yu
,
D. J.
,
2015
, “
Dynamic Load Identification for Stochastic Structures Based on Gegenbauer Polynomial Approximation and Regularization Method
,”
Mech. Syst. Signal Process.
,
56-57
, pp.
35
54
. 10.1016/j.ymssp.2014.10.008
33.
Tao
,
W.
,
Zhu
,
P.
,
Liu
,
Z.
, and
Chen
,
W.
,
2018
, “
Lightweight Design of Three-Dimensional Woven Composite Automobile Shock Tower
,”
Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec
,
Aug. 26–29
.
You do not currently have access to this content.