Abstract

Understanding the impact of engineering design on product competitions is imperative for product designers to better address customer needs and develop more competitive products. In this paper, we propose a dynamic network-based approach for modeling and analyzing the evolution of product competitions using multi-year buyer survey data. The product co-consideration network, formed based on the likelihood of two products being co-considered from survey data, is treated as a proxy of products’ competition relations in a market. The separate temporal exponential random graph model (STERGM) is employed as the dynamic network modeling technique to model the evolution of network as two separate processes: link formation and link dissolution. We use China’s automotive market as a case study to illustrate the implementation of the proposed approach and the benefits of dynamic network models compared to the static network modeling approach based on an exponential random graph model (ERGM). The results show that since STERGM takes preexisting competition relations into account, it provides a pathway to gain insights into why a product may maintain or lose its competitiveness over time. These driving factors include both product attributes (e.g., fuel consumption) as well as current market structures (e.g., the centralization effect). With the proposed dynamic network-based approach, the insights gained from this paper can help designers better interpret the temporal changes of product competition relations to support product design decisions.

References

1.
Christensen
,
C.
,
1997
, “
Patterns in the Evolution of Product Competition
,”
Eur. Manage. J.
,
15
(
2
), pp.
117
127
. 10.1016/S0263-2373(96)00081-3
2.
Bloomberg News
,
2018
, “
American Automakers Losing Ground in a Shrinking Chinese Market
,” Bloomberg.com
3.
Moss
,
T.
, and
Colias
,
M.
,
2019
, “
Ford’s Shrinking China Business Is Hurting Its Global Ambitions
,”
Wall Street Journal
[Online], https://www.wsj.com/articles/fords-slowing-china-business-is-creating-roadblocks-for-its-global-ambitions-11563787801
4.
Turrentine
,
T. S.
, and
Kurani
,
K. S.
,
2007
, “
Car Buyers and Fuel Economy?
,”
Energy Policy
,
35
(
2
), pp.
1213
1223
. 10.1016/j.enpol.2006.03.005
5.
Heffner
,
R.
,
Kurani
,
K. S.
, and
Turrentine
,
T. S.
,
2007
, “
Symbolism in Early Markets for Hybrid Electric Vehicles
,”
Technical Report No. UCD-ITS-RR-07-01
,
Institute of Transportation Studies, University of California
,
Davis, CA
.
6.
Talay
,
M. B.
,
Calantone
,
R. J.
, and
Voorhees
,
C. M.
,
2014
, “
Coevolutionary Dynamics of Automotive Competition: Product Innovation, Change, and Marketplace Survival
,”
J. Prod. Innov. Manage.
,
31
(
1
), pp.
61
78
. 10.1111/jpim.12080
7.
Roberts
,
P. W.
,
1999
, “
Product Innovation, Product–Market Competition and Persistent Profitability in the US Pharmaceutical Industry
,”
Strateg. Manage. J.
,
20
(
7
), pp.
655
670
. 10.1002/(SICI)1097-0266(199907)20:7<655::AID-SMJ44>3.0.CO;2-P
8.
Gandal
,
N.
,
2001
, “
The Dynamics of Competition in the Internet Search Engine Market
,”
Int. J. Ind. Org.
,
19
(
7
), pp.
1103
1117
. 10.1016/S0167-7187(01)00065-0
9.
Chisholm
,
D. C.
, and
Norman
,
G.
,
2012
, “
Market Access and Competition in Product Lines
,”
Int. J. Ind. Org.
,
30
(
5
), pp.
429
435
. 10.1016/j.ijindorg.2012.04.003
10.
Medhin
,
N. G.
, and
Wan
,
W.
,
2009
, “
Multi-New Product Competition in Duopoly: A Differential Game Analysis
,”
Dyn. Syst. Appl.
,
18
(
2
), p.
161
.
11.
Wang
,
M.
,
Sha
,
Z.
,
Huang
,
Y.
,
Contractor
,
N.
,
Fu
,
Y.
, and
Chen
,
W.
,
2018
, “
Predicting Products’ Co-Considerations and Market Competitions for Technology-Driven Product Design: A Network-Based Approach
,”
Des. Sci.
,
4
, p.
E9
.
12.
Sha
,
Z.
,
Huang
,
Y.
,
Fu
,
S.
,
Wang
,
M.
,
Fu
,
Y.
,
Contractor
,
N.
, and
Chen
,
W.
,
2018
, “
A Network-Based Approach to Modeling and Predicting Product Co-Consideration Relations
,”
Complexity
,
2018
, pp.
1
14
.
13.
Robins
,
G.
,
Pattison
,
P.
,
Kalish
,
Y.
, and
Lusher
,
D.
,
2007
, “
An Introduction to Exponential Random Graph (P*) Models for Social Networks
,”
Soc. Netw.
,
29
(
2
), pp.
173
191
. 10.1016/j.socnet.2006.08.002
14.
Wang
,
M.
,
Chen
,
W.
,
Huang
,
Y.
,
Contractor
,
N. S.
, and
Fu
,
Y.
,
2016
, “
Modeling Customer Preferences Using Multidimensional Network Analysis in Engineering Design
,”
Des. Sci.
,
2
, pp.
1
28
. 10.1017/dsj.2016.11
15.
Snijders
,
T. A. B.
,
Pattison
,
P. E.
,
Robins
,
G. L.
, and
Handcock
,
M. S.
,
2006
, “
New Specifications for Exponential Random Graph Models
,”
Sociol. Method.
,
36
(
1
), pp.
99
153
. 10.1111/j.1467-9531.2006.00176.x
16.
Wang
,
M.
,
Sha
,
Z.
,
Huang
,
Y.
,
Contractor
,
N.
,
Fu
,
Y.
, and
Chen
,
W.
,
2016
, “
Forecasting Technological Impacts on Customers’ Co-Consideration Behaviors: A Data-Driven Network Analysis Approach
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
, p.
V02AT03A040
.
17.
Wang
,
M.
,
Chen
,
W.
,
Fu
,
Y.
, and
Yang
,
Y.
,
2015
, “
Analyzing and Predicting Heterogeneous Customer Preferences in China’s Auto Market Using Choice Modeling and Network Analysis
,”
SAE Int. J. Mater. Manuf.
,
8
(
3
), pp.
668
677
. 10.4271/2015-01-0468
18.
Fu
,
J. S.
,
Sha
,
Z.
,
Huang
,
Y.
,
Wang
,
M.
,
Fu
,
Y.
, and
Chen
,
W.
,
2017
, “
Two-Stage Modeling of Customer Choice Preferences in Engineering Design Using Bipartite Network Analysis
,”
Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
, pp.
DETC2017-68099
,
V02AT03A03.9
.
19.
Hanneke
,
S.
,
Fu
,
W.
, and
Xing
,
E. P.
,
2006
, “
Discrete Temporal Models of Social Networks
,”
23rd International Conference on Machine Learning
,
Pittsburgh, PA
,
June 25–29
.
20.
Krivitsky
,
P. N.
, and
Handcock
,
M. S.
,
2014
, “
A Separable Model for Dynamic Networks
,”
J. R. Stat. Soc. Ser. B Stat. Methodol.
,
76
(
1
), pp.
29
46
. 10.1111/rssb.12014
21.
Watts
,
D. J.
, and
Strogatz
,
S. H.
,
1998
, “
Collective Dynamics Of ‘small-World’ Networks
,”
Nature
,
393
(
6684
), pp.
440
442
. 10.1038/30918
22.
Barabási
,
A.-L.
, and
Albert
,
R.
,
1999
, “
Emergence of Scaling in Random Networks
,”
Science
,
286
(
5439
), pp.
509
512
. 10.1126/science.286.5439.509
23.
Xu
,
K. S.
, and
Hero
,
A. O.
,
2013
, “
Dynamic Stochastic Blockmodels: Statistical Models for Time-Evolving Networks
,”
International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction
,
Washington, DC
,
Apr. 2–5
, pp.
201
210
.
24.
Block
,
P.
,
Koskinen
,
J.
,
Hollway
,
J.
,
Steglich
,
C.
, and
Stadtfeld
,
C.
,
2018
, “
Change We Can Believe In: Comparing Longitudinal Network Models on Consistency, Interpretability and Predictive Power
,”
Soc. Netw.
,
52
, pp.
180
191
. 10.1016/j.socnet.2017.08.001
25.
Snijders
,
T. A. B.
,
van de Bunt
,
G. G.
, and
Steglich
,
C. E. G.
,
2010
, “
Introduction to Stochastic Actor-Based Models for Network Dynamics
,”
Soc. Netw.
,
32
(
1
), pp.
44
60
. 10.1016/j.socnet.2009.02.004
26.
Leifeld
,
P.
, and
Cranmer
,
S. J.
,
2015
, “
A Theoretical and Empirical Comparison of the Temporal Exponential Random Graph Model and the Stochastic Actor-Oriented Model
,”
Radiochimica Acta
,
94
(
2
), pp.
679
682
. 10.1524/ract.2006.94.9-11.679
27.
Mousavi
,
R.
, and
Gu
,
B.
,
2015
,
The Effects of Homophily in Twitter Communication Network of U.S. House Representatives: A Dynamic Network Study
. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2666052
28.
Lebacher
,
M.
,
Thurner
,
P. W.
, and
Kauermann
,
G.
,
2018
, “
International Arms Trade: A Dynamic Separable Network Model With Heterogeneity Components
,”
arXiv1803.02707
.
29.
Wang
,
M.
, and
Chen
,
W.
,
2015
, “
A Data-Driven Network Analysis Approach to Predicting Customer Choice Sets for Choice Modeling in Engineering Design
,”
ASME J. Mech. Des.
,
137
(
7
), p.
71410
. 10.1115/1.4030160
30.
Hunter
,
D. R.
,
Handcock
,
M. S.
,
Butts
,
C. T.
,
Goodreau
,
S. M.
, and
Morris
,
M.
,
2008
, “
ERGM: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks
,”
J. Stat. Softw.
,
24
(
3
), p.
nihpa54860
. 10.18637/jss.v024.i03
31.
Lusher
,
D.
,
Koskinen
,
J.
, and
Robins
,
G.
,
2012
,
Exponential Random Graph Models for Social Networks: Theory, Methods, and Applications
,
Cambridge University Press
,
Cambridge
.
32.
Han
,
J.-D. J.
,
Bertin
,
N.
,
Hao
,
T.
,
Goldberg
,
D. S.
,
Berriz
,
G. F.
,
Zhang
,
L. V.
,
Dupuy
,
D.
,
Walhout
,
A. J. M.
,
Cusick
,
M. E.
,
Roth
,
F. P.
, and
Vidal
,
M.
,
2004
, “
Evidence for Dynamically Organized Modularity in the Yeast Protein–Protein Interaction Network
,”
Nature
,
430
(
6995
), pp.
88
93
. 10.1038/nature02555
33.
Conaldi
,
G.
, and
Lomi
,
A.
,
2013
, “
The Dual Network Structure of Organizational Problem Solving: A Case Study on Open Source Software Development
,”
Soc. Netw.
,
35
(
2
), pp.
237
250
. 10.1016/j.socnet.2012.12.003
34.
Tsamardinos
,
I.
, and
Borboudakis
,
G.
,
2010
, “
Permutation Testing Improves Bayesian Network Learning
,”
Joint European Conference on Machine Learning and Knowledge Discovery in Databases
,
Barcelona, Spain
,
Sept. 19–23
.
35.
Hu
,
M.-C.
,
Pavlicova
,
M.
, and
Nunes
,
E. V.
,
2011
, “
Zero-Inflated and Hurdle Models of Count Data With Extra Zeros: Examples From an HIV-Risk Reduction Intervention Trial
,”
Am. J. Drug Alcohol Abuse
,
37
(
5
), pp.
367
375
. 10.3109/00952990.2011.597280
36.
Blanchini
,
F.
,
Franco
,
E.
, and
Giordano
,
G.
,
2013
, “
Structured-LMI Conditions for Stabilizing Network-Decentralized Control
,”
52nd IEEE Conference on Decision and Control
,
Florence, Italy
,
Dec. 10–13
.
37.
Robins
,
G.
,
Pattison
,
P.
, and
Woolcock
,
J.
,
2004
, “
Missing Data in Networks: Exponential Random Graph (P*) Models for Networks With Non-Respondents
,”
Soc. Netw.
,
26
(
3
), pp.
257
283
. 10.1016/j.socnet.2004.05.001
38.
Snijders
,
T. A. B.
,
1991
, “
Enumeration and Simulation Methods for 0–1 Matrices With Given Marginals
,”
Psychometrika
,
56
(
3
), pp.
397
417
. 10.1007/BF02294482
39.
Sha
,
Z.
,
Bi
,
Y.
,
Wang
,
M.
,
Stathopoulos
,
A.
,
Contractor
,
N.
,
Fu
,
Y.
, and
Chen
,
W.
,
2019
, “
Comparing Utility-Based and Network-Based Approaches in Estimating Customer Preferences for Engineering Design
,”
The 21st International Conference on Engineering Design
,
Delft, The Netherlands
,
Aug. 5–8
, pp.
3831
3840
.
40.
Tan
,
P.-N.
,
Kumar
,
V.
, and
Srivastava
,
J.
,
2004
, “
Selecting the Right Objective Measure for Association Analysis
,”
Inf. Syst.
,
29
(
4
), pp.
293
313
. 10.1016/S0306-4379(03)00072-3
41.
Sha
,
Z.
,
Wang
,
M.
,
Huang
,
Y.
,
Contractor
,
N.
,
Fu
,
Y.
, and
Chen
,
W.
,
2017
, “
Modeling Product Co-Consideration Relations: A Comparative Study of Two Network Models
,”
Proceedings of the 21st International Conference on Engineering Design (ICED 17) Vol 6: Design Information and Knowledge
,
Vancouver, Canada
,
Aug. 21–25
, pp.
3831
3840
.
42.
Stevens
,
S. S.
,
1946
, “
On the Theory of Scales of Measurement
,”
Science
,
103
(
2684
),
677
680
.
43.
Kostoulas
,
A.
,
2013
, “
On Likert Scales, Ordinal Data and Mean Values
” [Online], https://achilleaskostoulas.com/2013/02/13/on-likert-scales-ordinal-data-and-mean-values/
44.
Krivitsky
,
P. N.
, and
Handcock
,
M.
,
2018
, “
Tergm: Fit, Simulate and Diagnose Models for Network Evolution Based on Exponential-Family Random Graph Models
,”
Statnet Proj., R Packag. Version
, Vol.
3
, No.
2
, https//cran.r-project.org/package=tergm
45.
Hunter
,
D. R.
,
2007
, “
Curved Exponential Family Models for Social Networks
,”
Soc. Netw.
,
29
(
2
), pp.
216
230
. 10.1016/j.socnet.2006.08.005
46.
Akaike
,
H.
,
1998
,
Selected Papers of Hirotugu Akaike (Editors: Kunio Tanabe, Emanuel Parzen)
,
Springer
,
New York
, pp.
199
213
.
47.
Saito
,
T.
, and
Rehmsmeier
,
M.
,
2015
, “
The Precision–Recall Plot Is More Informative Than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets
,”
PLoS One
,
10
(
3
), p.
e0118432
. 10.1371/journal.pone.0118432
48.
Flach
,
P.
, and
Kull
,
M.
,
2015
, “Precision–Recall-Gain Curves: PR Analysis Done Right”,
Advances in Neural Information Processing Systems
,
C.
Cortes
,
N. D.
Lawrence
,
D. D.
Lee
,
M.
Sugiyama
and
R.
Garnett
, eds.,
Curran Associates, Inc.
,
Red Hook, NY
, pp.
838
846
.
49.
Roy
,
R.
, and
Riedel
,
J. C.
,
1997
, “
Design and Innovation in Successful Product Competition
,”
Technovation
,
17
(
10
), pp.
537
594
. 10.1016/S0166-4972(97)00050-3
50.
Hsu
,
Y.
,
2011
, “
Design Innovation and Marketing Strategy in Successful Product Competition
,”
J. Bus. Ind. Mark.
,
26
(
4
), pp.
223
236
. 10.1108/08858621111126974
51.
Opsahl
,
T.
,
Agneessens
,
F.
, and
Skvoretz
,
J.
,
2010
, “
Node Centrality in Weighted Networks: Generalizing Degree and Shortest Paths
,”
Soc. Netw.
,
32
(
3
), pp.
245
251
. 10.1016/j.socnet.2010.03.006
52.
Wang
,
M.
,
Chen
,
W.
,
Huang
,
Y.
,
Contractor
,
N. S.
, and
Fu
,
Y.
,
2015
, “
A Multidimensional Network Approach for Modeling Customer–Product Relations in Engineering Design
,”
ASME 2015 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
, pp.
DETC2015-46764
,
V007T06A044
.
53.
Opsahl
,
T.
,
2013
, “
Triadic Closure in Two-Mode Networks: Redefining the Global and Local Clustering Coefficients
,”
Soc. Netw.
,
35
(
2
), pp.
159
167
. 10.1016/j.socnet.2011.07.001
You do not currently have access to this content.