Abstract

Accelerated life test (ALT) has been widely used to accelerate the product reliability assessment process by testing a product at higher than nominal stress conditions. For a system with multiple components, the tests can be performed at component-level or system-level. The data at these two levels require different amount of resources to collect and carry different values of information for system reliability assessment. Even though component-level tests are cheap to perform, they cannot account for the correlations between the failure time distributions of different components. While system-level tests can naturally account for the complicated dependence between component failure time distributions, the required testing efforts are much higher than that of component-level tests. This research proposes a novel resource allocation framework for ALT-based system reliability assessment. A physics-informed load model is first employed to bridge the gap between component-level tests and system-level tests. An optimization framework is then developed to effectively allocate testing resources to different types of tests. The information fusion of component-level and system-level tests allows us to accurately estimate the system reliability with a minimized requirement on the testing resources. Results of two numerical examples demonstrate the effectiveness of the proposed framework.

References

1.
Lee
,
J.
, and
Pan
,
R.
,
2010
, “
Analyzing Step-Stress Accelerated Life Testing Data Using Generalized Linear Models
,”
IIE Trans.
,
42
(
8
), pp.
589
598
. 10.1080/07408170903459976
2.
Monroe
,
E. M.
,
Pan
,
R.
,
Anderson-Cook
,
C. M.
,
Montgomery
,
D. C.
, and
Borror
,
C. M.
,
2010
, “
Sensitivity Analysis of Optimal Designs for Accelerated Life Testing
,”
J. Qual. Technol.
,
42
(
2
), pp.
121
135
. 10.1080/00224065.2010.11917811
3.
Pascual
,
F.
,
2007
, “
Accelerated Life Test Planning With Independent Weibull Competing Risks With Known Shape Parameter
,”
IEEE Trans. Reliab.
,
56
(
1
), pp.
85
93
. 10.1109/TR.2006.890885
4.
René Van Dorp
,
J.
, and
Mazzuchi
,
T. A.
,
2005
, “
A General Bayes Weibull Inference Model for Accelerated Life Testing
,”
Reliab. Eng. Syst. Saf.
,
90
(
2–3
), pp.
140
147
. 10.1016/j.ress.2004.10.012
5.
René Van Dorp
,
J.
, and
Mazzuchi
,
T. A.
,
2004
, “
A General Bayes Exponential Inference Model for Accelerated Life Testing
,”
J. Stat. Plann. Inference
,
119
(
1
), pp.
55
74
. 10.1016/S0378-3758(02)00411-1
6.
Elsayed
,
E. A.
, and
Zhang
,
H.
,
2009
, “
Design of Optimum Multiple-Stress Accelerated Life Testing Plans Based on Proportional Odds Model
,”
Int. J. Prod. Dev.
,
7
(
6
), pp.
186
198
. 10.1504/IJPD.2009.023317
7.
Lee
,
I.-C.
,
Hong
,
Y.
,
Tseng
,
S.-T.
, and
Dasgupta
,
T.
,
2018
, “
Sequential Bayesian Design for Accelerated Life Tests
,”
Technometrics
,
60
(
4
), pp.
472
483
.
8.
Zhang
,
Y.
, and
Meeker
,
W. Q.
,
2006
, “
Bayesian Methods for Planning Accelerated Life Tests
,”
Technometrics
,
48
(
1
), pp.
49
60
. 10.1198/004017005000000373
9.
Miller
,
R.
, and
Nelson
,
W.
,
1983
, “
Optimum Simple Step-Stress Plans for Accelerated Life Testing
,”
IEEE Trans. Reliab.
,
32
(
1
), pp.
59
65
. 10.1109/TR.1983.5221475
10.
Nelson
,
W.
,
1972
, “
Graphical Analysis of Accelerated Life Test Data With the Inverse Power Law Model
,”
IEEE Trans. Reliab.
,
21
(
1
), pp.
2
11
. 10.1109/TR.1972.5216164
11.
Zhao
,
W.
, and
Elsayed
,
E. A.
,
2005
, “
A General Accelerated Life Model for Step-Stress Testing
,”
IIE Trans.
,
37
(
11
), pp.
1059
1069
. 10.1080/07408170500232396
12.
Guo
,
H.
, and
Yang
,
X.
,
2007
, “
A Simple Reliability Block Diagram Method for Safety Integrity Verification
,”
Reliab. Eng. Syst. Saf.
,
92
(
9
), pp.
1267
1273
. 10.1016/j.ress.2006.08.002
13.
Pandey
,
V.
, and
Mourelatos
,
Z. P.
,
2015
, “
A New Method for Making Design Decisions: Decision Topologies
,”
ASME J. Mech. Des.
,
137
(
1
), p.
031401
. 10.1115/1.4029218
14.
Peng
,
H.
,
Feng
,
Q.
, and
Coit
,
D. W.
,
2010
, “
Reliability and Maintenance Modeling for Systems Subject to Multiple Dependent Competing Failure Processes
,”
IIE Trans.
,
43
(
1
), pp.
12
22
. 10.1080/0740817X.2010.491502
15.
Hu
,
Z.
, and
Mourelatos
,
Z. P.
,
2018
, “
A Sequential Accelerated Life Testing Framework for System Reliability Assessment With Untestable Components
,”
ASME J. Mech. Des.
,
140
(
10
), p.
101401
. 10.1115/1.4040626
16.
Nelson
,
W.
,
1980
, “
Accelerated Life Testing-Step-Stress Models and Data Analyses
,”
IEEE Trans. Reliab.
,
29
(
2
), pp.
103
108
. 10.1109/TR.1980.5220742
17.
Bai
,
D. S.
,
Kim
,
M.
, and
Lee
,
S.
,
1989
, “
Optimum Simple Step-Stress Accelerated Life Tests With Censoring
,”
IEEE Trans. Reliab.
,
38
(
5
), pp.
528
532
. 10.1109/24.46476
18.
Nelson
,
W.
,
1971
, “
Analysis of Accelerated Life Test Data-Part I: The Arrhenius Model and Graphical Methods
,”
IEEE Trans. Electr. Insul.
,
EI-6
(
4
), pp.
165
181
. 10.1109/TEI.1971.299172
19.
Uno
,
M.
, and
Tanaka
,
K.
,
2012
, “
Accelerated Charge–Discharge Cycling Test and Cycle Life Prediction Model for Supercapacitors in Alternative Battery Applications
,”
IEEE Trans. Ind. Electron.
,
59
(
12
), pp.
4704
4712
. 10.1109/TIE.2011.2182018
20.
Li
,
X.
, and
Jiang
,
T.
,
2009
, “
Optimal Design for Step-Stress Accelerated Degradation Testing With Competing Failure Modes
,”
Reliability and Maintainability Symposium, 2009 (RAMS 2009), Annual
,
Fort Worth, TX
,
Jan. 26–29
, pp.
64
68
.
21.
Bunea
,
C.
, and
Mazzuchi
,
T.
,
2006
, “
Competing Failure Modes in Accelerated Life Testing
,”
J. Stat. Plann. Inference
,
136
(
5
), pp.
1608
1620
. 10.1016/j.jspi.2004.10.030
22.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2019
, “
Probability Models for Data-Driven Global Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
187
(
1
), pp.
40
57
. 10.1016/j.ress.2018.12.003
23.
Bedford
,
T.
, and
Cooke
,
R. M.
,
2002
, “
Vines: A New Graphical Model for Dependent Random Variables
,”
Ann. Stat.
,
30
(
4
), pp.
1031
1068
.
24.
Aas
,
K.
,
Czado
,
C.
,
Frigessi
,
A.
, and
Bakken
,
H.
,
2009
, “
Pair-Copula Constructions of Multiple Dependence
,”
Insur. Math. Econ.
,
44
(
2
), pp.
182
198
. 10.1016/j.insmatheco.2007.02.001
25.
Pitt
,
M.
,
Chan
,
D.
, and
Kohn
,
R.
,
2006
, “
Efficient Bayesian Inference for Gaussian Copula Regression Models
,”
Biometrika
,
93
(
3
), pp.
537
554
. 10.1093/biomet/93.3.537
26.
Zhang
,
X. P.
,
Shang
,
J. Z.
,
Chen
,
X.
,
Zhang
,
C. H.
, and
Wang
,
Y. S.
,
2014
, “
Statistical Inference of Accelerated Life Testing With Dependent Competing Failures Based on Copula Theory
,”
IEEE Trans. Reliab.
,
63
(
3
), pp.
764
780
. 10.1109/TR.2014.2314598
27.
Bai
,
D. S.
,
Chung
,
S.
, and
Chun
,
Y.
,
1993
, “
Optimal Design of Partially Accelerated Life Tests for the Lognormal Distribution Under Type I Censoring
,”
Reliab. Eng. Syst. Saf.
,
40
(
1
), pp.
85
92
. 10.1016/0951-8320(93)90122-F
28.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
Accelerated Life Testing (ALT) Design Based on Computational Reliability Analysis
,”
Quality Reliab. Eng. Int.
,
32
(
1
), pp.
2217
2232
. 10.1002/qre.1929
29.
Si
,
W.
,
Yang
,
Q.
, and
Wu
,
X.
,
2018
, “
Material Degradation Modeling and Failure Prediction Using Microstructure Images
,”
Technometrics
,
61
(
4
), pp.
1
13
.
30.
Nevzat Özgüven
,
H.
, and
Houser
,
D. R.
,
1988
, “
Mathematical Models Used in Gear Dynamics—A Review
,”
J. Sound Vib.
,
121
(
3
), pp.
383
411
. 10.1016/S0022-460X(88)80365-1
31.
Kirchdoerfer
,
T.
, and
Ortiz
,
M.
,
2016
, “
Data-Driven Computational Mechanics
,”
Comput. Methods. Appl. Mech. Eng.
,
304
(
1
), pp.
81
101
. 10.1016/j.cma.2016.02.001
32.
Hu
,
Z.
,
Li
,
H.
,
Du
,
X.
, and
Chandrashekhara
,
K.
,
2013
, “
Simulation-Based Time-Dependent Reliability Analysis for Composite Hydrokinetic Turbine Blades
,”
Struct. Multidiscip. Optim.
,
47
(
5
), pp.
765
781
. 10.1007/s00158-012-0839-8
33.
Halloran
,
J. P.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
,
2005
, “
Explicit Finite Element Modeling of Total Knee Replacement Mechanics
,”
J. Biomech.
,
38
(
2
), pp.
323
331
. 10.1016/j.jbiomech.2004.02.046
34.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2012
, “
Quantification of Model Uncertainty: Calibration, Model Discrepancy, and Identifiability
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100908
. 10.1115/1.4007390
35.
Hu
,
Z.
,
Ao
,
D.
, and
Mahadevan
,
S.
,
2017
, “
Calibration Experimental Design Considering Field Response and Model Uncertainty
,”
Comput. Methods Appl. Mech. Eng.
,
318
(
1
), pp.
92
119
. 10.1016/j.cma.2017.01.007
36.
Jones
,
M. C.
,
1993
, “
Simple Boundary Correction for Kernel Density Estimation
,”
Stat. Comput.
,
3
(
3
), pp.
135
146
. 10.1007/BF00147776
37.
Djuric
,
P. M.
,
Kotecha
,
J. H.
,
Zhang
,
J.
,
Huang
,
Y.
,
Ghirmai
,
T.
,
Bugallo
,
M. F.
, and
Miguez
,
J.
,
2003
, “
Particle Filtering
,”
IEEE Signal Process. Mag.
,
20
(
5
), pp.
19
38
. 10.1109/MSP.2003.1236770
38.
Sasena
,
M. J.
,
Papalambros
,
P.
, and
Goovaerts
,
P.
,
2002
, “
Exploration of Metamodeling Sampling Criteria for Constrained Global Optimization
,”
Eng. Optim.
,
34
(
3
), pp.
263
278
. 10.1080/03052150211751
39.
Schonlau
,
M.
,
1997
, Computer Experiments and Global Optimization, Doctor of Philosphy in Statistics,
University of Waterloo
,
Waterloo, Ontario, Canada
.
40.
Helton
,
J. C.
, and
Davis
,
F. J.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
. 10.1016/S0951-8320(03)00058-9
41.
Pandey
,
V.
,
Mourelatos
,
Z.
,
Nikolaidis
,
E.
,
Castanier
,
M.
, and
Lamb
,
D.
,
2012
, “
System Failure Identification Using Linear Algebra: Application to Cost-Reliability Tradeoffs Under Uncertain Preferences
,”
SAE Technical Paper
,
1
(
1
), pp.
0148
7191
.
You do not currently have access to this content.