Abstract

Topology optimization has been proved to be an efficient tool for structural design. In recent years, the focus of structural topology optimization has been shifting from single material continuum structures to multimaterial and multiscale structures. This paper aims at devising a numerical scheme for designing bionic structures by combining a two-stage parametric level set topology optimization with the conformal mapping method. At the first stage, the macro-structural topology and the effective material properties are optimized simultaneously. At the second stage, another structural topology optimization is carried out to identify the exact layout of the metamaterial at the mesoscale. The achieved structure and metamaterial designs are further synthesized to form a multiscale structure using conformal mapping, which mimics the bionic structures with “orderly chaos” features. In this research, a multi-control-point conformal mapping (MCM) based on Ricci flow is proposed. Compared with conventional conformal mapping with only four control points, the proposed MCM scheme can provide more flexibility and adaptivity in handling complex geometries. To make the effective mechanical properties of the metamaterials invariant after conformal mapping, a variable-thickness structure method is proposed. Three 2D numerical examples using MCM schemes are presented, and their results and performances are compared. The achieved multimaterial multiscale structure models are characterized by the “orderly chaos” features of bionic structures while possessing the desired performance.

References

1.
Sigmund
,
O.
,
2001
, “
Design of Multiphysics Actuators Using Topology Optimization–Part II: Two-Material Structures
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
49–50
), pp.
6605
6627
. 10.1016/S0045-7825(01)00252-3
2.
Sigmund
,
O.
, and
Torquato
,
S.
,
1996
, “
Composites With Extremal Thermal Expansion Coefficients
,”
Appl. Phys. Lett.
,
69
(
21
), pp.
3203
3205
. 10.1063/1.117961
3.
Sigmund
,
O.
,
2009
, “
Systematic Design of Metamaterials by Topology Optimization
,”
IUTAM Symposium on Modelling Nanomaterials and Nanosystems
,
Aalborg, Denmark
,
May 19–22
, pp.
151
159
.
4.
Sigmund
,
O.
,
1994
, “
Design of Material Structures Using Topology Optimization
,” Ph.D. thesis,
Technical University of Denmark
,
Denmark
.
5.
Diaz
,
A. R.
, and
Sigmund
,
O.
,
2010
, “
A Topology Optimization Method for Design of Negative Permeability Metamaterials
,”
Struct. Multidiscip. Optim.
,
41
(
2
), pp.
163
177
. 10.1007/s00158-009-0416-y
6.
Zhou
,
S.
, and
Li
,
Q.
,
2008
, “
Computational Design of Microstructural Composites With Tailored Thermal Conductivity
,”
Numer. Heat Transfer, Part A: Appl.
,
54
(
7
), pp.
686
708
. 10.1080/10407780802339031
7.
Zhou
,
S.
,
Li
,
W.
,
Sun
,
G.
, and
Li
,
Q.
,
2010
, “
A Level-Set Procedure for the Design of Electromagnetic Metamaterials
,”
Opt. Express
,
18
(
7
), pp.
6693
6702
. 10.1364/OE.18.006693
8.
Fullwood
,
D. T.
,
Niezgoda
,
S. R.
,
Adams
,
B. L.
, and
Kalidindi
,
S. R.
,
2010
, “
Microstructure Sensitive Design for Performance Optimization
,”
Prog. Mater. Sci.
,
55
(
6
), pp.
477
562
. 10.1016/j.pmatsci.2009.08.002
9.
Deng
,
J.
,
Yan
,
J.
, and
Cheng
,
G.
,
2013
, “
Multi-Objective Concurrent Topology Optimization of Thermoelastic Structures Composed of Homogeneous Porous Material
,”
Struct. Multidiscip. Optim.
,
47
(
4
), pp.
583
597
. 10.1007/s00158-012-0849-6
10.
Vlasea
,
M.
,
Shanjani
,
Y.
,
Bothe
,
A.
,
Kandel
,
R.
, and
Toyserkani
,
E.
,
2013
, “
A Combined Additive Manufacturing and Micro-Syringe Deposition Technique for Realization of Bio-Ceramic Structures With Micro-Scale Channels
,”
Int. J. Adv. Manuf. Technol.
,
68
(
9–12
), pp.
2261
2269
. 10.1007/s00170-013-4839-7
11.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscip. Optim.
,
48
(
6
), pp.
1031
1055
. 10.1007/s00158-013-0978-6
12.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2002
, “
A Level-Set Method for Shape Optimization
,”
Comptes Rendus Mathematique
,
334
(
12
), pp.
1125
1130
. 10.1016/S1631-073X(02)02412-3
13.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
. 10.1016/S0045-7825(02)00559-5
14.
Sethian
,
J. A.
, and
Wiegmann
,
A.
,
2000
, “
Structural Boundary Design via Level Set and Immersed Interface Methods
,”
J. Comput. Phys.
,
163
(
2
), pp.
489
528
. 10.1006/jcph.2000.6581
15.
Yamada
,
T.
,
Izui
,
K.
, and
Nishiwaki
,
S.
,
2011
, “
A Level Set-Based Topology Optimization Method for Maximizing Thermal Diffusivity in Problems Including Design-Dependent Effects
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031011
. 10.1115/1.4003684
16.
Zhu
,
B.
,
Zhang
,
X.
, and
Fatikow
,
S.
,
2014
, “
Level Set-Based Topology Optimization of Hinge-Free Compliant Mechanisms Using a Two-Step Elastic Modeling Method
,”
ASME J. Mech. Des.
,
136
(
3
), p.
031007
. 10.1115/1.4026097
17.
Lin
,
S.
,
Zhao
,
L.
,
Guest
,
J. K.
,
Weihs
,
T. P.
, and
Liu
,
Z.
,
2015
, “
Topology Optimization of Fixed-Geometry Fluid Diodes
,”
ASME J. Mech. Des.
,
137
(
8
), p.
081402
. 10.1115/1.4030297
18.
Sethian
,
J. A.
,
1996
, “
Theory, Algorithms, and Applications of Level Set Methods for Propagating Interfaces
,”
Acta Numerica
,
5
, pp.
309
395
. 10.1017/S0962492900002671
19.
Wang
,
M. Y.
, and
Wang
,
X.
,
2004
, “
“Color” Level Sets: a Multi-Phase Method for Structural Topology Optimization With Multiple Materials
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
6–8
), pp.
469
496
. 10.1016/j.cma.2003.10.008
20.
Xia
,
Q.
, and
Shi
,
T.
,
2016
, “
Optimization of Structures With Thin-Layer Functional Device on its Surface Through a Level Set Based Multiple-Type Boundary Method
,”
Comput. Methods Appl. Mech. Eng.
,
311
, pp.
56
70
. 10.1016/j.cma.2016.08.001
21.
Wei
,
P.
, and
Wang
,
M. Y.
,
2009
, “
Piecewise Constant Level Set Method for Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
78
(
4
), pp.
379
402
. 10.1002/nme.2478
22.
Merriman
,
B.
,
Bence
,
J. K.
, and
Osher
,
S. J.
,
1994
, “
Motion of Multiple Junctions: A Level Set Approach
,”
J. Comput. Phys.
,
112
(
2
), pp.
334
363
. 10.1006/jcph.1994.1105
23.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1999
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge
.
24.
Christensen
,
R. M.
,
2000
, “
Mechanics of Cellular and Other Low-Density Materials
,”
Int. J. Solids Struct.
,
37
(
1–2
), pp.
93
104
. 10.1016/S0020-7683(99)00080-3
25.
Valdevit
,
L.
,
Jacobsen
,
A. J.
,
Greer
,
J. R.
, and
Carter
,
W. B.
,
2011
, “
Protocols for the Optimal Design of Multi-Functional Cellular Structures: From Hypersonics to Micro-Architected Materials
,”
J. Am. Ceram. Soc.
,
94
, pp.
s15
s34
. 10.1111/j.1551-2916.2011.04599.x
26.
Han
,
S. C.
,
Lee
,
J. W.
, and
Kang
,
K.
,
2015
, “
A New Type of Low Density Material: Shellular
,”
Adv. Mater.
,
27
(
37
), pp.
5506
5511
. 10.1002/adma.201501546
27.
Du
,
Z.
,
Zhou
,
X.-Y.
,
Picelli
,
R.
, and
Kim
,
H. A.
,
2018
, “
Connecting Microstructures for Multiscale Topology Optimization With Connectivity Index Constraints
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111417
. 10.1115/1.4041176
28.
Zhou
,
S.
, and
Li
,
Q.
,
2008
, “
Design of Graded Two-Phase Microstructures for Tailored Elasticity Gradients
,”
J. Mater. Sci.
,
43
(
15
), pp.
5157
5167
. 10.1007/s10853-008-2722-y
29.
Zhou
,
S.
,
Li
,
W.
,
Chen
,
Y.
,
Sun
,
G.
, and
Li
,
Q.
,
2011
, “
Topology Optimization for Negative Permeability Metamaterials Using Level-Set Algorithm
,”
Acta Mater.
,
59
(
7
), pp.
2624
2636
. 10.1016/j.actamat.2010.12.049
30.
Wang
,
Y.
,
Luo
,
Z.
,
Zhang
,
N.
, and
Kang
,
Z.
,
2014
, “
Topological Shape Optimization of Microstructural Metamaterials Using a Level Set Method
,”
Comput. Mater. Sci.
,
87
, pp.
178
186
. 10.1016/j.commatsci.2014.02.006
31.
Vogiatzis
,
P.
,
Chen
,
S.
,
Wang
,
X.
,
Li
,
T.
, and
Wang
,
L.
,
2017
, “
Topology Optimization of Multi-Material Negative Poisson’s Ratio Metamaterials Using a Reconciled Level Set Method
,”
Comput.-Aided Des.
,
83
, pp.
15
32
. 10.1016/j.cad.2016.09.009
32.
Wang
,
Y.
,
Gao
,
J.
,
Luo
,
Z.
,
Brown
,
T.
, and
Zhang
,
N.
,
2017
, “
Level-Set Topology Optimization for Multimaterial and Multifunctional Mechanical Metamaterials
,”
Eng. Optim.
,
49
(
1
), pp.
22
42
. 10.1080/0305215X.2016.1164853
33.
Deng
,
J.
, and
Chen
,
W.
,
2017
, “
Concurrent Topology Optimization of Multiscale Structures With Multiple Porous Materials Under Random Field Loading Uncertainty
,”
Struct. Multidiscipl. Optim.
,
56
(
1
), pp.
1
19
. 10.1007/s00158-017-1689-1
34.
Sivapuram
,
R.
,
Dunning
,
P. D.
, and
Kim
,
H. A.
,
2016
, “
Simultaneous Material and Structural Optimization by Multiscale Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
54
(
5
), pp.
1267
1281
. 10.1007/s00158-016-1519-x
35.
Wang
,
Y.
,
Chen
,
F.
, and
Wang
,
M. Y.
,
2017
, “
Concurrent Design With Connectable Graded Microstructures
,”
Comput. Methods Appl. Mech. Eng.
,
317
, pp.
84
101
. 10.1016/j.cma.2016.12.007
36.
Li
,
H.
,
Luo
,
Z.
,
Gao
,
L.
, and
Qin
,
Q.
,
2018
, “
Topology Optimization for Concurrent Design of Structures With Multi-Patch Microstructures by Level Sets
,”
Comput. Methods Appl. Mech. Eng.
,
331
, pp.
536
561
. 10.1016/j.cma.2017.11.033
37.
Jiang
,
L.
, and
Chen
,
S.
,
2017
, “
Parametric Structural Shape & Topology Optimization With a Variational Distance-Regularized Level Set Method
,”
Comput. Methods Appl. Mech. Eng.
,
321
, pp.
316
336
. 10.1016/j.cma.2017.03.044
38.
Luo
,
Z.
,
Tong
,
L.
,
Wang
,
M. Y.
, and
Wang
,
S.
,
2007
, “
Shape and Topology Optimization of Compliant Mechanisms Using a Parameterization Level Set Method
,”
J. Comput. Phys.
,
227
(
1
), pp.
680
705
. 10.1016/j.jcp.2007.08.011
39.
Wang
,
S.
, and
Wang
,
M. Y.
,
2006
, “
Radial Basis Functions and Level Set Method for Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
65
(
12
), pp.
2060
2090
. 10.1002/nme.1536
40.
Svanberg
,
K.
,
2007
,
MMA and GCMMA – Two Methods for Nonlinear Optimization
.
41.
Dunning
,
P. D.
, and
Kim
,
H. A.
,
2015
, “
Introducing the Sequential Linear Programming Level-Set Method for Topology Optimization
,”
Struct. Multidiscip. Optim.
,
51
(
3
), pp.
631
643
. 10.1007/s00158-014-1174-z
42.
Wang
,
Y.
, and
Kang
,
Z.
,
2018
, “
A Velocity Field Level Set Method for Shape and Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
115
(
11
), pp.
1315
1336
. 10.1002/nme.5845
43.
Jiang
,
L.
,
Ye
,
H.
,
Zhou
,
C.
, and
Chen
,
S.
,
2019
, “
Parametric Topology Optimization Toward Rational Design and Efficient Prefabrication for Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
041007
. 10.1115/1.4042580
44.
Jiang
,
L.
,
Chen
,
S.
, and
Jiao
,
X.
,
2018
, “
Parametric Shape and Topology Optimization: A New Level Set Approach Based on Cardinal Basis Functions
,”
Int. J. Numeri. Methods Eng.
,
114
(
1
), pp.
66
87
. 10.1002/nme.5733
45.
Jiang
,
L.
,
Ye
,
H.
,
Zhou
,
C.
,
Chen
,
S.
, and
Xu
,
W.
,
2017
, “
Parametric Topology Optimization Toward Rational Design and Efficient Prefabrication for Additive Manufacturing
,”
ASME 2017 12th International Manufacturing Science and Engineering Conference Collocated With the JSME/ASME 2017 6th International Conference on Materials and Processing
,
Cleveland, OH
,
Aug. 6–9
, American Society of Mechanical Engineers, p. V004T05A006.
46.
Jiang
,
L.
,
Chen
,
S.
, and
Wei
,
P.
,
2018
, “
Concurrent Optimization of Structure Topology and Infill Properties With a Cardinal-Function-Based Parametric Level Set Method
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Canada
,
Aug. 26–29
, American Society of Mechanical Engineers, p. V02BT03A006.
47.
Jiang
,
L.
,
Guo
,
Y.
,
Chen
,
S.
,
Wei
,
P.
,
Lei
,
N.
, and
Gu
,
X. D.
,
2019
, “
Concurrent Optimization of Structural Topology and Infill Properties With a CBF-Based Level Set Method
,”
Front. Mech. Eng.
,
14
(
2
), p.
171
. 10.1007/s11465-019-0530-5
48.
Jiang
,
L.
,
Chen
,
S.
, and
Gu
,
X. D.
,
2019
, “
Generative Design of Multi-Material Hierarchical Structures via Concurrent Topology Optimization and Conformal Geometry Method
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
.
49.
Challis
,
V.
,
Roberts
,
A.
, and
Wilkins
,
A.
,
2008
, “
Design of Three Dimensional Isotropic Microstructures for Maximized Stiffness and Conductivity
,”
Int. J. Solids Struct.
,
45
(
14–15
), pp.
4130
4146
. 10.1016/j.ijsolstr.2008.02.025
50.
Radman
,
A.
,
Huang
,
X.
, and
Xie
,
Y.
,
2013
, “
Topological Optimization for the Design of Microstructures of Isotropic Cellular Materials
,”
Eng. Optim.
,
45
(
11
), pp.
1331
1348
. 10.1080/0305215X.2012.737781
51.
Guth
,
D.
,
Luersen
,
M.
, and
Muñoz-Rojas
,
P.
,
2015
, “
Optimization of Three-Dimensional Truss-Like Periodic Materials Considering Isotropy Constraints
,”
Struct. Multidiscip. Optim.
,
52
(
5
), pp.
889
901
. 10.1007/s00158-015-1282-4
52.
Li
,
C.
,
Xu
,
C.
,
Gui
,
C.
, and
Fox
,
M. D.
,
2010
, “
Distance Regularized Level Set Evolution and Its Application to Image Segmentation
,”
IEEE Trans. Image Process.
,
19
(
12
), pp.
3243
3254
. 10.1109/TIP.2010.2069690
53.
Neves
,
M.
,
Rodrigues
,
H.
, and
Guedes
,
J. M.
,
2000
, “
Optimal Design of Periodic Linear Elastic Microstructures
,”
Comput. Struct.
,
76
(
1–3
), pp.
421
429
. 10.1016/S0045-7949(99)00172-8
54.
Zhang
,
W.
,
Dai
,
G.
,
Wang
,
F.
,
Sun
,
S.
, and
Bassir
,
H.
,
2007
, “
Using Strain Energy-Based Prediction of Effective Elastic Properties in Topology Optimization of Material Microstructures
,”
Acta Mech. Sin.
,
23
(
1
), pp.
77
89
. 10.1007/s10409-006-0045-2
55.
Huang
,
X.
,
Radman
,
A.
, and
Xie
,
Y.
,
2011
, “
Topological Design of Microstructures of Cellular Materials for Maximum Bulk Or Shear Modulus
,”
Comput. Mater. Sci.
,
50
(
6
), pp.
1861
1870
. 10.1016/j.commatsci.2011.01.030
56.
Wang
,
M. Y.
,
Zong
,
H.
,
Ma
,
Q.
,
Tian
,
Y.
, and
Zhou
,
M.
,
2019
, “
Cellular Level Set in B-Splines (CLIBS): A Method for Modeling and Topology Optimization of Cellular Structures
,”
Comput. Methods Appl. Mech. Eng.
,
349
, pp.
378
404
. 10.1016/j.cma.2019.02.026
57.
Li
,
H.
,
Luo
,
Z.
,
Gao
,
L.
, and
Walker
,
P.
,
2018
, “
Topology Optimization for Functionally Graded Cellular Composites With Metamaterials by Level Sets
,”
Comput. Methods Appl. Mech. Eng.
,
328
, pp.
340
364
. 10.1016/j.cma.2017.09.008
You do not currently have access to this content.