Abstract

Digital twin has the potential for increasing production, achieving real-time monitor, and realizing predictive maintenance by establishing a real-time high-fidelity mapping between the physical entity and its digital model. However, the high accuracy and instantaneousness requirements of digital twins have hindered their applications in practical engineering. This article presents a universal framework to fulfill the requirements and to build an accurate and trustworthy digital twin by integrating numerical simulations, sensor data, multifidelity surrogate (MFS) models, and visualization techniques. In practical engineering, the number of sensors available to measure quantities of interest is often limited, and complementary simulations are necessary to compute these quantities. The simulation results are generally more comprehensive but not as accurate as the sensor data. Therefore, the proposed framework combines the benefits of both simulation results and sensor data by using an MFS model based on moving least squares (MLS), named MLS-based multifidelity surrogate (MFS-MLS). The MFS-MLS was developed as an essential part to calibrate the continuous field of the simulation by limited sensor data to obtain accurate results for the digital twin. Then, single-fidelity surrogate models are built on the whole domain using the calibrated results of the MFS-MLS as training samples and sensor data as inputs to predict and visualize the quantities of interest in real time. In addition, the framework was validated by a truss test case, and the results demonstrate that the proposed framework has the potential to be an effective tool to build accurate and trustworthy digital twins.

References

1.
Cimino
,
C.
,
Negri
,
E.
, and
Fumagalli
,
L.
,
2019
, “
Review of Digital Twin Applications in Manufacturing
,”
Comput. Ind.
,
113
(
12
), p.
103130
.
2.
Lai
,
X.
,
Wang
,
S.
,
Guo
,
Z.
,
Zhang
,
C.
,
Sun
,
W.
, and
Song
,
X.
,
2021
, “
Designing a Shape-Performance Integrated Digital Twin Based on Multiple Models and Dynamic Data: A Boom Crane Example
,”
ASME J. Mech. Des.
,
143
(
7
), p.
071703
.
5.
Tuegel
,
E. J.
,
Ingraffea
,
A. R.
,
Eason
,
T. G.
, and
Spottswood
,
S. M.
,
2011
, “
Reengineering Aircraft Structural Life Prediction Using a Digital Twin
,”
Int. J. Aerosp. Eng.
,
2011
(
12
), pp.
1
14
.
6.
Glaessgen
,
E. H.
, and
Stargel
,
D. S.
,
2012
, “
The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles
,”
Collection of Technical Papers—AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Honolulu, HI
,
Apr. 23–26
, pp.
1
14
.
7.
Tao
,
F.
,
Sui
,
F.
,
Liu
,
A.
,
Qi
,
Q.
,
Zhang
,
M.
,
Song
,
B.
,
Guo
,
Z.
,
Lu
,
S. C. Y.
, and
Nee
,
A. Y. C.
,
2019
, “
Digital Twin-Driven Product Design Framework
,”
Int. J. Prod. Res.
,
57
(
12
), pp.
3935
3953
.
8.
Tao
,
F.
,
Zhang
,
M.
,
Liu
,
Y.
, and
Nee
,
A. Y. C.
,
2018
, “
Digital Twin Driven Prognostics and Health Management for Complex Equipment
,”
CIRP Ann.
,
67
(
1
), pp.
169
172
.
9.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2017
, “
Shaping the Digital Twin for Design and Production Engineering
,”
CIRP Ann.—Manuf. Technol.
,
66
(
1
), pp.
141
144
.
10.
Wang
,
J.
,
Ye
,
L.
,
Gao
,
R. X.
,
Li
,
C.
, and
Zhang
,
L.
,
2019
, “
Digital Twin for Rotating Machinery Fault Diagnosis in Smart Manufacturing
,”
Int. J. Prod. Res.
,
57
(
12
), pp.
3920
3934
.
11.
Tao
,
F.
,
Zhang
,
H.
,
Liu
,
A.
, and
Nee
,
A. Y. C.
,
2019
, “
Digital Twin in Industry: State-of-the-Art
,”
IEEE Trans. Ind. Inf.
,
15
(
4
), pp.
2405
2415
.
12.
Rasheed
,
A.
,
San
,
O.
, and
Kvamsdal
,
T.
,
2020
, “
Digital Twin: Values, Challenges and Enablers From a Modeling Perspective
,”
IEEE Access
,
8
(
1
), pp.
21980
22012
.
13.
Lee
,
Y.-H.
, and
Fong
,
Z.-H.
,
2020
, “
Study on Building Digital-Twin of Face-Milled Hypoid Gear From Measured Tooth Surface Topographical Data
,”
ASME J. Mech. Des.
,
142
(
11
), p.
113401
.
14.
Zhang
,
H.
,
Ma
,
L.
,
Sun
,
J.
,
Lin
,
H.
, and
Thürer
,
M.
,
2019
, “
Digital Twin in Services and Industrial Product Service Systems: Review and Analysis
,”
Procedia CIRP
,
83
(
7
), pp.
57
60
.
15.
Söderberg
,
R.
,
Wärmefjord
,
K.
,
Carlson
,
J. S.
, and
Lindkvist
,
L.
,
2017
, “
Toward a Digital Twin for Real-Time Geometry Assurance in Individualized Production
,”
CIRP Ann.—Manuf. Technol.
,
66
(
1
), pp.
137
140
.
16.
Haag
,
S.
, and
Anderl
,
R.
,
2018
, “
Digital Twin—Proof of Concept
,”
Manuf. Lett.
,
15
(
2
), pp.
64
66
.
17.
Magargle
,
R.
,
Johnson
,
L.
,
Mandloi
,
P.
,
Davoudabadi
,
P.
,
Kesarkar
,
O.
,
Krishnaswamy
,
S.
,
Batteh
,
J.
, and
Pitchaikani
,
A.
,
2017
, “
A Simulation-Based Digital Twin for Model-Driven Health Monitoring and Predictive Maintenance of an Automotive Braking System
,”
Proceedings of 12th International Model of Conference
,
Prague, Czech Republic
,
May 15–17
,
132
, pp.
35
46
.
18.
Guivarch
,
D.
,
Mermoz
,
E.
,
Marino
,
Y.
, and
Sartor
,
M.
,
2019
, “
Creation of Helicopter Dynamic Systems Digital Twin Using Multibody Simulations
,”
CIRP Ann.
,
68
(
1
), pp.
133
136
.
19.
Zohdi
,
T. I.
,
2020
, “
A Machine-Learning Framework for Rapid Adaptive Digital-Twin Based Fire-Propagation Simulation in Complex Environments
,”
Comput. Methods Appl. Mech. Eng.
,
363
(
2
), p.
112907
.
20.
Fotland
,
G.
,
Haskins
,
C.
, and
Rølvåg
,
T.
,
2020
, “
Trade Study to Select Best Alternative for Cable and Pulley Simulation for Cranes on Offshore Vessels
,”
Syst. Eng.
,
23
(
2
), pp.
177
188
.
21.
Moi
,
T.
,
Cibicik
,
A.
, and
Rølvåg
,
T.
,
2020
, “
Digital Twin Based Condition Monitoring of a Knuckle Boom Crane: An Experimental Study
,”
Eng. Fail. Anal.
,
112
(
3
), p.
104517
.
22.
Tabar
,
R. S.
,
Warmefjord
,
K.
,
Soderberg
,
R.
, and
Lindkvist
,
L.
,
2020
, “
Efficient Spot Welding Sequence Optimization in a Geometry Assurance Digital Twin
,”
ASME J. Mech. Des.
,
142
(
10
), p.
102001
.
23.
He
,
B.
,
2020
, “
Digital Twin-Based Sustainable Intelligent Manufacturing : A Review
,”
Adv. Manuf.
,
9
(
1
), pp.
1
21
.
24.
Mahjoubi
,
S.
,
Barhemat
,
R.
, and
Bao
,
Y.
,
2020
, “
Optimal Placement of Triaxial Accelerometers Using Hypotrochoid Spiral Optimization Algorithm for Automated Monitoring of High-Rise Buildings
,”
Autom. Constr.
,
118
(
10
), pp.
1
16
.
25.
Seshadri
,
B. R.
, and
Krishnamurthy
,
T.
,
2017
, “
Structural Health Management of Damaged Aircraft Structures Using the Digital Twin Concept
,”
25th AIAA/AHS Adaptive Structures Conference
,
Grapevine, TX
,
Jan. 9–13
, pp.
1
14
.
26.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2001
, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidiscip. Optim.
,
23
(
1
), pp.
1
13
.
27.
Forrester
,
A. I. J.
, and
Keane
,
A. J.
,
2009
, “
Recent Advances in Surrogate-Based Optimization
,”
Prog. Aerosp. Sci.
,
45
(
1–3
), pp.
50
79
.
28.
Queipo
,
N. V.
,
Haftka
,
R. T.
,
Shyy
,
W.
,
Goel
,
T.
,
Vaidyanathan
,
R.
, and
Tucker
,
P. K.
,
2005
, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerosp. Sci.
,
1
(
41
), pp.
1
28
.
29.
Zhang
,
Y.
,
Wang
,
S.
,
Zhou
,
C.
,
Lv
,
L.
, and
Song
,
X.
,
2021
, “
A Fast Active Learning Method in Design of Experiments: Multipeak Parallel Adaptive Infilling Strategy Based on Expected Improvement
,”
Struct. Multidiscip. Optim.
,
64
(
9
), pp.
1259
1284
.
30.
Park
,
C.
,
Haftka
,
R. T.
, and
Kim
,
N. H.
,
2017
, “
Remarks on Multi-Fidelity Surrogates
,”
Struct. Multidiscip. Optim.
,
55
(
3
), pp.
1029
1050
.
31.
Song
,
X.
,
Lv
,
L.
,
Sun
,
W.
, and
Zhang
,
J.
,
2019
, “
A Radial Basis Function-Based Multi-Fidelity Surrogate Model: Exploring Correlation Between High-Fidelity and Low-Fidelity Models
,”
Struct. Multidiscip. Optim.
,
60
(
9
), pp.
965
981
.
32.
Li
,
K.
,
Liu
,
Y.
,
Wang
,
S.
, and
Song
,
X.
,
2021
, “
Multifidelity Data Fusion Based on Gradient-Enhanced Surrogate Modeling Method
,”
ASME J. Mech. Des.
,
143
(
12
), p.
121704
.
33.
Liu
,
Y.
,
Li
,
K.
,
Wang
,
S.
,
Cui
,
P.
,
Song
,
X.
, and
Sun
,
W.
,
2021
, “
A Sequential Sampling Generation Method for Multi-Fidelity Model Based on Voronoi Region and Sample Density
,”
ASME J. Mech. Des.
,
143
(
12
), p.
121702
.
34.
Kleijnen
,
J. P. C.
,
2008
, “
Response Surface Methodology for Constrained Simulation Optimization: An Overview
,”
Simul. Modell. Pract. Theory
,
16
(
1
), pp.
50
64
.
35.
Fang
,
H.
, and
Horstemeyer
,
M. F.
,
2006
, “
Global Response Approximation With Radial Basis Functions
,”
Eng. Optim.
,
38
(
4
), pp.
407
424
.
36.
Majdisova
,
Z.
, and
Skala
,
V.
,
2017
, “
Radial Basis Function Approximations: Comparison and Applications
,”
Appl. Math. Modell.
,
51
(
11
), pp.
728
743
.
37.
Hao
,
P.
,
Feng
,
S.
,
Zhang
,
K.
,
Li
,
Z.
,
Wang
,
B.
, and
Li
,
G.
,
2018
, “
Adaptive Gradient-Enhanced Kriging Model for Variable-Stiffness Composite Panels Using Isogeometric Analysis
,”
Struct. Multidiscip. Optim.
,
58
(
1
), pp.
1
16
.
38.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
435
.
39.
Clarke
,
S. M.
,
Griebsch
,
J. H.
, and
Simpson
,
T. W.
,
2005
, “
Analysis of Support Vector Regression for Approximation of Complex Engineering Analyses
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
1077
1087
.
40.
Smola
,
A. J.
, and
Schölkopf
,
B.
,
2004
, “
A Tutorial on Support Vector Regression
,”
Stat. Comput.
,
14
(
3
), pp.
199
222
.
41.
Lancaster
,
P.
, and
Salkauskas
,
K.
,
1981
, “
Surfaces Generated by Moving Least Squares Methods
,”
Math. Comput.
,
37
(
155
), p.
141
.
42.
Wang
,
B.
,
2015
, “
A Local Meshless Method Based on Moving Least Squares and Local Radial Basis Functions
,”
Eng. Anal. Boundary Elem.
,
50
(
1
), pp.
395
401
.
43.
Mohammadhassani
,
M.
,
Nezamabadi-Pour
,
H.
,
Jumaat
,
M. Z.
,
Jameel
,
M.
, and
Arumugam
,
A. M. S.
,
2000
, “
Artificial Neural Networks: Fundamentals, Computing, Design, and Application
,”
J. Microbiol. Methods
,
43
(
1
), pp.
3
31
.
44.
Napier
,
N.
,
Sriraman
,
S.-A.
,
Tran
,
H. T.
, and
James
,
K. A.
,
2020
, “
An Artificial Neural Network Approach for Generating High-Resolution Designs From Low-Resolution Input in Topology Optimization
,”
ASME J. Mech. Des.
,
142
(
1
), p.
011402
.
45.
Bunnell
,
S.
,
Thelin
,
C.
,
Gorrell
,
S.
,
Salmon
,
J.
,
Ruoti
,
C.
, and
Hepworth
,
A.
,
2018
, “
Rapid Visualization of Compressor Blade Finite Element Models Using Surrogate Modeling
,”
Proceedings of ASME Turbo Expo
,
Oslo, Norway
,
June 11–15
, pp.
1
12
.
46.
Zhou
,
Q.
,
Wang
,
Y.
,
Choi
,
S. K.
,
Jiang
,
P.
,
Shao
,
X.
, and
Hu
,
J.
,
2017
, “
A Sequential Multi-Fidelity Metamodeling Approach for Data Regression
,”
Knowl-Based Syst.
,
134
(
10
), pp.
199
212
.
47.
Wang
,
B.
,
2020
, “
Adaptive Infill Sampling Criterion for Multi-Fidelity Gradient-Enhanced Kriging Model
,”
Struct Multidisc Optim
,
62
(
7
), pp.
353
373
.
48.
Haftka
,
R. T.
,
1991
, “
Combining Global and Local Approximations
,”
AIAA J.
,
29
(
9
), pp.
1523
1525
.
49.
Chang
,
K. J.
,
Haftka
,
R. T.
,
Giles
,
G. L.
, and
Kao
,
P. J.
,
1993
, “
Sensitivity-Based Scaling for Approximating Structural Response
,”
J. Aircr.
,
30
(
2
), pp.
283
288
.
50.
Hutchison
,
M. G.
,
Unger
,
E. R.
,
Mason
,
W. H.
,
Grossman
,
B.
, and
Haftka
,
R. T.
,
1994
, “
Variable-Complexity Aerodynamic Optimization of a High-Speed Civil Transport Wing
,”
J. Aircr.
,
31
(
1
), pp.
110
116
.
51.
Goldfeld
,
Y.
,
Vervenne
,
K.
,
Arbocz
,
J.
, and
Van Keulen
,
F.
,
2005
, “
Multi-Fidelity Optimization of Laminated Conical Shells for Buckling
,”
Struct. Multidiscip. Optim.
,
30
(
2
), pp.
128
141
.
52.
Sun
,
G.
,
Li
,
G.
,
Stone
,
M.
, and
Li
,
Q.
,
2010
, “
A Two-Stage Multi-Fidelity Optimization Procedure for Honeycomb-Type Cellular Materials
,”
Comput. Mater. Sci.
,
49
(
3
), pp.
500
511
.
53.
Eldred
,
M. S.
,
Giunta
,
A. A.
, and
Collis
,
S. S.
,
2004
, “
Second-Order Caorrections for Surrogate-Based Optimization With Model Hierarchies
,”
Collection of Technical Papers—10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
New York
,
Aug. 30–Sept. 1
, Vol. 3, pp. 1754–1768..
54.
Zhou
,
Q.
,
Shao
,
X.
,
Jiang
,
P.
,
Zhou
,
H.
, and
Shu
,
L.
,
2015
, “
An Adaptive Global Variable Fidelity Metamodeling Strategy Using a Support Vector Regression Based Scaling Function
,”
Simul. Modell. Pract. Theory
,
59
(
12
), pp.
18
35
.
55.
Absi
,
G. N.
, and
Mahadevan
,
S.
,
2019
, “
Simulation and Sensor Optimization for Multifidelity Dynamics Model Calibration
,”
AIAA J.
,
2
(
58
), pp.
879
888
.
56.
Batra
,
R.
,
Pilania
,
G.
,
Uberuaga
,
B. P.
, and
Ramprasad
,
R.
,
2019
, “
Multifidelity Information Fusion With Machine Learning: A Case Study of Dopant Formation Energies in Hafnia
,”
ACS Appl. Mater. Interfaces
,
11
(
28
), pp.
24906
24918
.
57.
Park
,
C.
,
Haftka
,
R. T.
, and
Kim
,
N. H.
,
2018
, “
Low-Fidelity Scale Factor Improves Bayesian Multi-Fidelity Prediction by Reducing Bumpiness of Discrepancy Function
,”
Struct. Multidiscip. Optim.
,
58
(
2
), pp.
399
414
.
58.
Han
,
Z. H.
, and
Görtz
,
S.
,
2012
, “
Hierarchical Kriging Model for Variable-Fidelity Surrogate Modeling
,”
AIAA J.
,
50
(
9
), pp.
1885
1896
.
59.
Durantin
,
C.
,
Rouxel
,
J.
,
Désidéri
,
J. A.
, and
Glière
,
A.
,
2017
, “
Multifidelity Surrogate Modeling Based on Radial Basis Functions
,”
Struct. Multidiscip. Optim.
,
56
(
5
), pp.
1061
1075
.
60.
Tao
,
J.
, and
Sun
,
G.
,
2019
, “
Application of Deep Learning Based Multi-Fidelity Surrogate Model to Robust Aerodynamic Design Optimization
,”
Aerosp. Sci. Technol.
,
92
(
9
), pp.
722
737
.
61.
Lv
,
L.
,
Zong
,
C.
,
Zhang
,
C.
,
Song
,
X.
, and
Sun
,
W.
,
2021
, “
Multi-Fidelity Surrogate Model Based on Canonical Correlation Analysis and Least Squares
,”
ASME J. Mech. Des.
,
143
(
2
), p.
021705
.
62.
Giselle Fernández-Godino
,
M.
,
Park
,
C.
,
Kim
,
N. H.
, and
Haftka
,
R. T.
,
2019
, “
Issues in Deciding Whether to Use Multifidelity Surrogates
,”
AIAA J.
,
57
(
5
), pp.
2039
2054
.
63.
,
Q.
,
Xiao
,
Z. P.
,
Ji
,
J.
,
Zheng
,
J.
, and
Shang
,
Y. Q.
,
2017
, “
Moving Least Squares Method for Reliability Assessment of Rock Tunnel Excavation Considering Ground-Support Interaction
,”
Comput. Geotech.
,
84
(
4
), pp.
88
100
.
64.
Breitkopf
,
P.
,
Naceur
,
H.
,
Rassineux
,
A.
, and
Villon
,
P.
,
2005
, “
Moving Least Squares Response Surface Approximation: Formulation and Metal Forming Applications
,”
Comput. Struct.
,
83
(
17–18
), pp.
1411
1428
.
You do not currently have access to this content.