Abstract

According to the concept of physical integration as understood in axiomatic design, design parameters of a product should be integrated into a single physical part or a few parts with the aim of reducing the information content, while still satisfying the independence of functional requirement. However, no specific method is suggested in the literature for determining the optimal degree of physical integration in a given design. This is particularly important with the current advancement in technologies such as additive manufacturing. As new manufacturing technologies allow physical elements to be integrated in new ways, new methods are needed to help designers optimize physical integration given the specific constraints and conflicts of each design. This study proposes an algorithm that uses graph partitioning to allow a designer to optimize the integration of functional requirements into a target number of parts, with the goal of minimizing the co-allocation of incompatible functional requirements in the same part. The operation and viability of the algorithm are demonstrated via two numerical examples and a practical example of designing a pencil.

References

1.
Shirwaiker
,
R. A.
, and
Okudan
,
G. E.
,
2008
, “
Triz and Axiomatic Design: A Review of Case-studies and a Proposed Synergistic Use
,”
J. Intell. Manuf.
,
19
(
1
), pp.
33
47
.
2.
Suh
,
N. P.
,
1998
, “
Axiomatic Design Theory for Systems
,”
Res. Eng. Des.
,
10
(
4
), pp.
189
209
.
3.
Suh
,
N. P.
,
2016
,
Axiomatic Design in Large Systems
,
Spring International Publishing
,
Cham
.
4.
Farid
,
A. M.
, and
Suh
,
N. P.
,
2016
,
Axiomatic Design in Large Systems
,
Spring International Publishing
,
Cham
.
5.
Park
,
G. J.
,
2014
, “
Teaching Conceptual Design Using Axiomatic Design to Engineering Students and Practitioners
,”
J. Mech. Sci. Technol.
,
28
(
3
), pp.
989
998
.
6.
Hirani
,
H.
, and
Suh
,
N.
,
2005
, “
Journal Bearing Design Using Multi-objective Genetic Algorithm and Axiomatic Design Approaches
,”
Tribol. Int.
,
38
(
5
), pp.
481
491
.
7.
Boshire
,
J.
,
Wang
,
S.
,
Khasawneh
,
M.
,
Gandhi
,
T.
, and
Srihari
,
K.
,
2016
,
Ann. Inf. Syst.
, Vol.
19
,
Springer International Publishing
,
New York
, pp.
73
101
.
8.
Girgenti
,
A.
,
Giorgetti
,
A.
,
Citti
,
P.
, and
Romanelli
,
M.
,
2015
, “
Development of a Custom Software for Processing the Stress Corrosion Experimental Data Through Axiomatic Design
,”
Procedia CIRP
,
34
, pp.
250
255
.
9.
Cochran
,
D. S.
,
Eversheim
,
W.
,
Kubin
,
G.
, and
Sesterhenn
,
M. L.
,
2000
, “
The Application of Axiomatic Design and Lean Management Principles in the Scope of Productions System Segmentation
,”
Int. J. Prod. Res.
,
38
(
6
), pp.
1377
1396
.
10.
Fan
,
S. H.
,
Li
,
J. H.
,
Jiang
,
Z.
, and
Zhang
,
Z. G.
,
2014
, “
Axiomatic Design of Facility Layout for Reconfigurable Manufacturing System
,”
Appl. Mech. Mater.
,
703
, pp.
273
276
.
11.
Zarali
,
F.
, and
Yazgan
,
H. R.
,
2016
, “
Solution of Logistics Center Selection Problem Using the Axiomatic Design Method
,”
World Acad. Sci. Eng. Technol. Int. J. Comput. Electr. Autom. Control Inf. Eng.
,
10
(
3
), pp.
489
495
.
12.
Foley
,
J. T.
, and
Hardardóttir
,
S.
,
2016
, “
Creative Axiomatic Design
,”
Procedia CIRP
,
50
(
4
), pp.
240
245
.
13.
Fan
,
L.
,
Cai
,
M.
,
Lin
,
Y.
, and
Zhang
,
W. J.
,
2015
, “
Axiomatic Design Theory: Further Notes and Its Guideline to Applications
,”
Int. J. Mater. Prod. Technol.
,
51
(
4
), pp.
359
374
.
14.
Salonitis
,
K.
,
2016
, “
Design for Additive Manufacturing Based on the Axiomatic Design Method
,”
Int. J. Adv. Manuf. Technol.
,
87
(
1–4
), pp.
989
996
.
15.
Maier
,
J.
, and
Fadel
,
G.
,
2009
, “
Affordance Based Design: A Relational Theory for Design
,”
Res. Eng. Des.
,
20
(
1
), pp.
13
27
.
16.
Hazelrigg
,
G.
,
2003
, “
Validation of Engineering Design Alternative Selection Methods
,”
Eng. Optim.
,
35
(
2
), pp.
103
120
.
17.
Olewnik
,
A.
, and
Lewis
,
K.
,
2005
, “
On Validating Engineering Design Decision Support Tools
,”
Concurrent Eng.
,
13
(
2
), pp.
111
122
.
18.
Allen
,
K.
, and
Carlson-Skalak
,
S.
,
1998
, “
Defining Product Architecture During Conceptual Design
,”
Proceedings of the ASME 1998 Design Engineering Technical Conferences. Volume 3: 10th International Conference on Design Theory and Methodology
,
Atlanta, GA
,
Sept. 13–16
.
19.
Gershenson
,
J.
,
Prasad
,
G.
, and
Zhang
,
Y.
,
2003
, “
Product Modularity: Definitions and Benefits
,”
J. Eng. Des.
,
14
(
3
), pp.
295
313
.
20.
Ishii
,
K.
,
Juengel
,
C.
, and
Eubanks
,
C.
,
1995
, “
Design for Product Variety: Key to Product Line Structuring
,”
Proceedings of the ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. Volume 2: 11th Biennial Conference on Reliability, Stress Analysis, and Failure Prevention; 7th International Conference on Design Theory and Methodology; JSME Symposium on Design and Production; Mechanical Design Education and History; Computer-Integrated Concurrent Design Conference
,
Boston, MA
,
Sept. 17–20
.
21.
Ulrich
,
K.
, and
Eppinger
,
S.
,
1995
,
Product Design and Development
,
McGraw Hill Education
,
New York
.
22.
Guenov
,
M.
, and
Barker
,
S.
,
2005
, “
Application of Axiomatic Design and Design Structure Matrix to the Decomposition of Engineering Systems
,”
Sys. Eng.
,
8
(
1
), pp.
29
40
.
23.
Eppinger
,
S.
, and
Browning
,
T.
,
2012
,
Design Structure Matrix Methods and Applications
,
MIT Press
,
Cambridge, MA
.
24.
Pektas
,
S.
, and
Pultar
,
M.
,
2006
, “
Modelling Detailed Information Flows in Building Design With the Parameter-Based Design Structure Matrix
,”
Des. Stud.
,
27
(
1
), pp.
99
122
.
25.
Tang
,
D.
,
Zhang
,
G.
, and
Dai
,
S.
,
2009
, “
Design as Integration of Axiomatic Design and Design Structure Matrix
,”
Rob. Comput. Integr. Manuf.
,
25
(
3
), pp.
610
619
.
26.
Foith-Forster
,
P.
,
Wiedenmann
,
M.
,
Seichter
,
D.
, and
Bauernhansl
,
T.
,
2016
, “
Axiomatic Approach to Flexible and Changeable Production System Design
,”
Procedia CIRP
,
53
(
2
), pp.
8
14
.
27.
Kirschman
,
C. F.
, and
Fadel
,
G. M.
,
1998
, “
Classifying Functions for Mechanical Design
,”
ASME J. Mech. Des.
,
120
(
3
), pp.
475
482
.
28.
Bonjour
,
E.
,
Denlaud
,
S.
,
Dulmet
,
M.
, and
Harmel
,
G.
,
2009
, “
A Fuzzy Method for Propagating Functional Architecture Constraints to Physical Architecture
,”
ASME J. Mech. Des.
,
131
(
6
), p.
061002
29.
Devanathan
,
S.
,
Rananujan
,
S.
,
Bernstein
,
D.
,
Zhao
,
W. Z.
, and
Ramani
,
K.
,
2010
, “
Integration of Sustainability Into Early Design Through the Function Impact Matrix
,”
ASME J. Mech. Des.
,
132
(
8
), p.
81004
.
30.
Kurtoglu
,
T.
, and
Tumer
,
I. Y.
,
2008
, “
A Graph-Based Fault Identification and Propagation Framework for Functional Design of Complex Systems
,”
ASME J. Mech. Des.
,
130
(
5
), p.
051401
31.
Zhang
,
Z.
,
Liu
,
L.
,
Wei
,
W.
,
Tao
,
F.
,
Li
,
T.
, and
Liu
,
A.
,
2017
, “
A Systematic Function Recommendation Process for Data-Driven Product and Service Design
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111404
32.
Bhasin
,
D.
,
McAdams
,
D. A.
, and
Layton
,
A.
,
2021
, “
A Product Architecture-Based Tool for Bioinspired Function-Sharing
,”
ASME J. Mech. Des.
,
143
(
8
), p.
81401
.
33.
Zetterburg
,
A.
,
Mortberg
,
U.
, and
Balfors
,
B.
,
2010
, “
Making Graph Theory Operational for Landscape Ecological Assessments, Planning, and Design
,”
Landscape Urban Plann.
,
95
(
4
), pp.
181
191
.
34.
Bondy
,
J.
, and
Murty
,
U.
,
1976
,
Graph Theory with Applications
,
Springer International Publishing
,
New York
.
35.
Papalambros
,
P.
,
1995
, “
Optimal Design of Mechanical Engineering Systems
,”
J. Vib. Acoust.
,
117
(
B
), pp.
55
62
.
36.
Buluç
,
A.
,
Meyerhenke
,
H.
,
Safro
,
I.
,
Sanders
,
P.
, and
Schulz
,
C.
,
2016
,
Recent Advances in Graph Partitioning
,
Springer
, pp.
117
158
.
37.
Bader
,
D.
,
Meyerhenke
,
H.
,
Sanders
,
P.
,
Wagner
,
D.
,
Teichmann
,
M.
,
Jacob
,
J.
,
Bernardes-lima
,
F.
,
Hangu
,
R.
, and
Hayrapetyan
,
S.
,
2012
, “
Graph partitioning and graph clustering
,”
Proceedings of the 10th DIMACS implementation challenge workshop
,
Atlanta, GA
,
Feb. 13–14
.
38.
Fern
,
X.
, and
Brodley
,
C.
,
2004
, “
Solving Cluster Ensemble Problems by Bipartite Graph Partitioning
,”
Proceedings of the Twenty-First International Conference on Machine Learning
,
Banff, Alberta, Canada
,
July 4–8
, p.
36
.
39.
Hendrickson
,
B.
, and
Kolda
,
T. G.
,
2000
, “
Graph Partitioning Models for Parallel Computing
,”
Parallel Comput.
,
26
(
12
), pp.
1519
1534
.
40.
Li
,
M.
,
Zhang
,
Y. F.
, and
Fuh
,
J. Y. H.
,
2010
, “
Retrieving Reusable 3d Cad Models Using Knowledge-Driven Dependency Graph Partitioning
,”
Comput.-Aided Des. Appl.
,
7
(
3
), pp.
417
430
.
41.
Borisovsky
,
P.
,
Dolgui
,
A.
, and
Kovalev
,
S.
,
2012
, “
Algorithms and Implementation of a Set Partitioning Approach for Modular Machining Line Design
,”
Comput. Oper. Res.
,
39
(
12
), pp.
3147
3155
.
You do not currently have access to this content.