Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This study presents a novel framework for the optimal design of compliant mechanisms, specifically addressing the structural drawbacks of conventional single-point or de facto hinges. The hinges often lead to structural instability and stress concentration while deriving maximum motion. To overcome these issues, we introduce a new method that can design stable and elastic domains connected by either revolute or prismatic joints. The new method, called sequential analysis based on the reaction force, can successfully eliminate weak hinge points while optimizing joint locations. The efficiency of developed methodology is validated through several numerical examples, yielding compliant mechanisms with suppressed hinges.

References

1.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
J. Struct. Mech.
,
25
(
4
), pp.
493
524
.
2.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “
Topological Synthesis of Compliant Mechanisms Using Multi-criteria Optimization
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
238
245
.
3.
Stanford
,
B.
, and
Beran
,
P.
,
2011
, “
Conceptual Design of Compliant Mechanisms for Flapping Wings With Topology Optimization
,”
AIAA J.
,
49
(
4
), pp.
855
867
.
4.
Jagtap
,
S. P.
,
Deshmukh
,
B. B.
, and
Pardeshi
,
S.
,
2021
, “
Applications of Compliant Mechanism in Today’s World – A Review
,”
J. Phys.: Conf. Ser.
,
1969
(
1
), p.
012013
.
5.
Bernardoni
,
P.
,
Bidaud
,
P.
,
Bidard
,
C.
, and
Gosselin
,
F.
,
2004
, “
A New Compliant Mechanism Design Methodology Based on Flexible Building Blocks
,”
Smart Structures and Materials 2004: Modeling, Signal Processing, and Control
,
San Diego, CA
,
Mar. 15–18
, SPIE, pp.
244
254
.
6.
Gallego
,
J. A.
, and
Herder
,
J.
,
2009
, “
Synthesis Methods in Compliant Mechanisms: An Overview
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30–Sept. 2
, Vol. 49040, pp.
193
214
.
7.
Bilancia
,
P.
, and
Berselli
,
G.
,
2021
, “
An Overview of Procedures and Tools for Designing Nonstandard Beam-Based Compliant Mechanisms
,”
Comput.-Aid. Des.
,
134
, p.
103001
.
8.
Howell
,
L. L.
,
2013
, “
Compliant Mechanisms
,”
21st Century Kinematics: The 2012 NSF Workshop
,
Chicago, IL
,
Aug. 11–12
, Springer, pp.
189
216
.
9.
Lobontiu
,
N.
,
2002
,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC Press
,
Boca Raton, FL
.
10.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
John Wiley & Sons
,
Hoboken, NJ
.
11.
Pei
,
X.
,
Yu
,
J.
,
Zong
,
G.
, and
Bi
,
S.
,
2010
, “
An Effective Pseudo-Rigid-Body Method for Beam-Based Compliant Mechanisms
,”
Precis. Eng.
,
34
(
3
), pp.
634
639
.
12.
Pucheta
,
M. A.
, and
Cardona
,
A.
,
2010
, “
Design of Bistable Compliant Mechanisms Using Precision-Position and Rigid-Body Replacement Methods
,”
Mech. Mach. Theory
,
45
(
2
), pp.
304
326
.
13.
Wang
,
N.
,
Liang
,
X.
, and
Zhang
,
X.
,
2014
, “
Pseudo-Rigid-Body Model for Corrugated Cantilever Beam Used in Compliant Mechanisms
,”
Chin. J. Mech. Eng.
,
27
(
1
), pp.
122
129
.
14.
Hao
,
G.
, and
Li
,
H.
,
2015
, “
Conceptual Designs of Multi-Degree of Freedom Compliant Parallel Manipulators Composed of Wire-Beam Based Compliant Mechanisms
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
229
(
3
), pp.
538
555
.
15.
Zhu
,
B.
,
Zhang
,
X.
,
Zhang
,
H.
,
Liang
,
J.
,
Zang
,
H.
,
Li
,
H.
, and
Wang
,
R.
,
2020
, “
Design of Compliant Mechanisms Using Continuum Topology Optimization: A Review
,”
Mech. Mach. Theory
,
143
, p.
103622
.
16.
Yoon
,
G.
,
Kim
,
Y.
,
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
, “
Hinge-Free Topology Optimization With Embedded Translation-Invariant Differentiable Wavelet Shrinkage
,”
Struct. Multidiscipl. Optim.
,
27
(
3
), pp.
139
150
.
17.
Kim
,
J. E.
,
Kim
,
Y. Y.
, and
Min
,
S.
,
2005
, “
A Note on Hinge-Free Topology Design Using the Special Triangulation of Design Elements
,”
Commun. Numer. Methods Eng.
,
21
(
12
), pp.
701
710
.
18.
Zhou
,
H.
, and
Killekar
,
P. P.
,
2011
, “
The Modified Quadrilateral Discretization Model for the Topology Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
133
(
11
), p.
111007
.
19.
Saxena
,
A.
,
2008
, “
A Material-Mask Overlay Strategy for Continuum Topology Optimization of Compliant Mechanisms Using Honeycomb Discretization
,”
ASME J. Mech. Des.
,
130
(
8
), p.
082304
.
20.
Sigmund
,
O.
,
2007
, “
Morphology-Based Black and White Filters for Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
33
(
4
), pp.
401
424
.
21.
Luo
,
Z.
,
Chen
,
L.
,
Yang
,
J.
,
Zhang
,
Y.
, and
Abdel-Malek
,
K.
,
2005
, “
Compliant Mechanism Design Using Multi-objective Topology Optimization Scheme of Continuum Structures
,”
Struct. Multidiscipl. Optim.
,
30
(
2
), pp.
142
154
.
22.
Li
,
R.
, and
Zhu
,
B.
,
2016
, “
An Augmented Formulation of Distributed Compliant Mechanism Optimization Using a Level Set Method
,”
Adv. Mech. Eng.
,
8
(
8
), p.
1687814016664489
.
23.
De Leon
,
D. M.
,
Alexandersen
,
J.
, and
Sigmund
,
O.
,
2015
, “
Stress-Constrained Topology Optimization for Compliant Mechanism Design
,”
Struct. Multidiscipl. Optim.
,
52
(
5
), pp.
929
943
.
24.
Xia
,
Q.
, and
Shi
,
T.
,
2015
, “
Constraints of Distance From Boundary to Skeleton: For the Control of Length Scale in Level Set Based Structural Topology Optimization
,”
Comput. Meth. Appl. Mech. Eng.
,
295
, pp.
525
542
.
25.
Yoon
,
G. H.
,
Kim
,
Y. Y.
,
Langelaar
,
M.
, and
van Keulen
,
F.
,
2008
, “
Theoretical Aspects of the Internal Element Connectivity Parameterization Approach for Topology Optimization
,”
Int. J. Numer. Meth. Eng.
,
76
(
6
), pp.
775
797
.
26.
Kim
,
J. H.
,
Choi
,
Y. H.
, and
Yoon
,
G. H.
,
2023
, “
Development of a Joint Distance Constraint for Optimized Topology and Optimized Connection for Multiple Components
,”
Eng. Optim.
,
55
(
9
), pp.
1456
1476
.
27.
Yi
,
B.
,
Yoon
,
G. H.
, and
Peng
,
X.
,
2021
, “
A Simple Density Filter for the Topology Optimization of Coated Structures
,”
Eng. Optim.
,
53
(
12
), pp.
2088
2107
.
28.
Zhang
,
W.
,
Yuan
,
J.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
A New Topology Optimization Approach Based on Moving Morphable Components (MMC) and the Ersatz Material Model
,”
Struct. Multidiscipl. Optim.
,
53
(
6
), pp.
1243
1260
.
29.
Van Dijk
,
N. P.
,
Maute
,
K.
,
Langelaar
,
M.
, and
Van Keulen
,
F.
,
2013
, “
Level-Set Methods for Structural Topology Optimization: A Review
,”
Struct. Multidiscipl. Optim.
,
48
(
3
), pp.
437
472
.
30.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes–A New Method for Structural Optimization
,”
Int. J. Numer. Meth. Eng.
,
24
(
2
), pp.
359
373
.
You do not currently have access to this content.