Abstract

Technical organizations increasingly rely on innovation contests to find novel ideas for designing complex systems. These activities involve outsiders in the early stages of the design process, leading to ground-breaking designs that often surpass expectations. Here, the contest’s rules document plays a crucial role: this design artifact communicates the organization’s problem and the desired system performance to the participants—significantly impacting the resulting solutions. However, the contest’s nature amplifies the challenges of communicating complex design problems across boundaries. Existing strategies for formulating—i.e., requirement and objective allocation—might not suit this context. We developed an inductive model of their formulation process based on a multiyear field study of five complex innovation contests. We found that a formulation team (or “seeker”) balanced the need to communicate their problem in detail with the risk of excluding valuable participants. Here, they chose among three approaches—incentivize, impose, or subsume—depending on their knowledge of potential solutions and the participants’ capabilities. Notably, the seeker formulated more granularly than the literature describes, employing multiple approaches within each rules document. These findings shed light on a poorly understood aspect of innovation contests, shed new light on a longstanding debate in the engineering design literature, and guide practitioners’ formulation processes.

References

1.
Nonaka
,
I.
,
1994
, “
A Dynamic Theory of Organizational Knowledge Creation
,”
Organ. Sci.
,
5
(
1
), pp.
14
37
.
2.
Hobday
,
M.
,
1998
, “
Product Complexity, Innovation and Industrial Organisation
,”
Res. Policy
,
26
(
6
), pp.
689
710
.
3.
Szajnfarber
,
Z.
, and
Vrolijk
,
A-P.
,
2018
, “
A Facilitated Expert-Based Approach to Architecting “Openable” Complex Systems
,”
Syst. Eng.
,
21
(
1
), pp.
47
58
.
4.
Szajnfarber
,
Z.
,
Zhang
,
L.
,
Mukherjee
,
S.
,
Crusan
,
J.
,
Hennig
,
A.
, and
Vrolijk
,
A.-P.
,
2020
, “
Who Is in the Crowd? Characterizing the Capabilities of Prize Competition Competitors
,”
IEEE Trans. Eng. Manage.
,
69
(
4
), pp.
1
15
.
5.
Suh
,
E. S.
, and
de Weck
,
O. L.
,
2018
, “
Modeling Prize-Based Open Design Challenges: General Framework and FANG-1 Case Study
,”
Syst. Eng.
,
21
(
4
), pp.
295
306
.
6.
Sha
,
Z.
,
Kannan
,
K. N.
, and
Panchal
,
J. H.
,
2015
, “
Behavioral Experimentation and Game Theory in Engineering Systems Design
,”
J. Mech. Des.
,
137
(
5
), p.
051405
.
7.
Kay
,
L.
,
2011
, “
The Effect of Inducement Prizes on Innovation: Evidence From the Ansari XPrize and the Northrop Grumman Lunar Lander Challenge
,”
R&D Manage.
,
41
(
4
), pp.
360
377
.
8.
Chesbrough
,
H.
,
2003
,
Open Innovation: The New Imperative for Creating and Profiting From Technology
,
Harvard Business Press
,
Boston, MA
.
9.
von Hippel
,
E.
,
2005
,
Democratizing Innovation
,
MIT Press
,
Cambridge, MA
.
10.
Bucciarelli
,
L. L.
,
1994
,
Designing Engineers
,
MIT Press
,
Cambridge, MA
.
11.
Afuah
,
A.
, and
Tucci
,
C. L.
,
2012
, “
Crowdsourcing as a Solution to Distant Search
,”
Acad. Manage. Rev.
,
37
(
3
), pp.
355
375
.
12.
Goucher-Lambert
,
K.
, and
Cagan
,
J.
,
2019
, “
Crowd Sourcing Inspiration: Using Crowd Generated Inspirational Stimuli to Support Designer Ideation
,”
Des. Stud.
,
61
, pp.
1
29
.
13.
Vrolijk
,
A-P.
, and
Szajnfarber
,
Z.
,
2021
, “
Exploring How Prize Challenges Complement an Organization’s Innovation Efforts
,”
CESUN 2020 Engineering Systems Symposium
,
West Lafayette, IN
,
June
.
14.
Piezunka
,
H.
, and
Dahlander
,
L.
,
2015
, “
Distant Search, Narrow Attention: How Crowding Alters Organizations’ Filtering of Suggestions in Crowdsourcing
,”
Acad. Manage. J.
,
58
(
3
), pp.
856
880
.
15.
Wallin
,
M. W.
,
von Krogh
,
G.
, and
Sieg
,
J. H.
,
2018
,
A Problem in the Making: How Firms Formulate Sharable Problems for Open Innovation Contests
,
Oxford University Press
,
Oxford, UK
.
16.
Vrolijk
,
A.-P.
,
Roman
,
M. C.
, and
Szajnfarber
,
Z.
,
2022
, “
Mapping the Benefits From Innovation Contests
,”
Res.-Technol. Manage.
,
65
(
1
), pp.
29
38
.
17.
Shergadwala
,
M.
,
Forbes
,
H.
,
Schaefer
,
D.
, and
Panchal
,
J. H.
,
2020
, “
Challenges and Research Directions in Crowdsourcing for Engineering Design: An Interview Study With Industry Professionals
,”
IEEE Trans. Eng. Manage.
,
69
(
4
), pp.
1592
1604
.
18.
Paik
,
J. H.
,
Scholl
,
M.
,
Sergeev
,
R.
,
Randazzo
,
S.
, and
Lakhani
,
K. R.
,
2020
, “
Innovation Contests for High-Tech Procurement
,”
Res.-Technol. Manage.
,
63
(
2
), pp.
36
45
.
19.
Mitroff
,
I. I.
, and
Featheringham
,
T. R.
,
1974
, “
On Systemic Problem Solving and the Error of the Third Kind
,”
Behav. Sci.
,
19
(
6
), pp.
383
393
.
20.
Carlile
,
P. R.
,
2002
, “
A Pragmatic View of Knowledge and Boundaries: Boundary Objects in New Product Development
,”
Organ. Sci.
,
13
(
4
), pp.
442
455
.
21.
Vrolijk
,
A-P.
, and
Szajnfarber
,
Z.
,
2020
, “
Leveraging the Household Sector: Local Knowledge, Local Formulation, and Depth of Contribution
,”
Acad. Manage. Proc.
,
2020
(
1
), p.
21313
.
22.
Yassine
,
A.
, and
Braha
,
D.
,
2003
, “
Complex Concurrent Engineering and the Design Structure Matrix Method
,”
Concurr. Eng.
,
11
(
3
), pp.
165
176
.
23.
Volkema
,
R. J.
,
1995
, “
Creativity in MS/OR: Managing the Process of Formulating the Problem
,”
INFORMS J. Appl. Anal.
,
25
(
3
), pp.
81
87
.
24.
Baer
,
M.
,
Dirks
,
K. T.
, and
Nickerson
,
J. A.
,
2013
, “
Microfoundations of Strategic Problem Formulation
,”
Strategic Manage. J.
,
34
(
2
), pp.
197
214
.
25.
Baldwin
,
C. Y.
, and
Clark
,
K. B.
,
2000
,
Design Rules
,
Vol. 1
,
MIT Press
,
Cambridge, MA
.
26.
Cross
,
N.
,
2004
, “
Expertise in Design: An Overview
,”
Des. Stud.
,
25
(
5
), pp.
427
441
.
27.
Maier
,
M.
, and
Rechtin
,
E.
,
2000
,
The Art of Systems Architecting
, 2nd ed.
CRC Press
,
Boca Raton, FL
.
28.
Buede
,
D. M.
, and
Miller
,
W. D.
,
2016
,
The Engineering Design of Systems: Models and Methods
,
John Wiley & Sons
.
29.
Alexander
,
C.
,
1964
,
Notes on the Synthesis of Form
,
Harvard University Press
,
Boston, MA
.
30.
Hazelrigg
,
G. A.
,
1998
, “
A Framework for Decision-Based Engineering Design
,”
ASME J. Mech. Des.
,
120
(
4
), pp.
653
658
.
31.
Ryan
,
M. J.
, and
Wheatcraft
,
L. S.
,
2017
, “
On a Cohesive Set of Requirements Engineering Terms
,”
Syst. Eng.
,
20
(
2
), pp.
118
130
.
32.
Vermillion
,
S. D.
, and
Malak
,
R. J.
,
2020
, “
An Investigation on Requirement and Objective Allocation Strategies Using a Principal–Agent Model
,”
Syst. Eng.
,
23
(
1
), pp.
100
117
.
33.
Collopy
,
P. D.
, and
Hollingsworth
,
P. M.
,
2011
, “
Value-Driven Design
,”
J. Aircr.
,
48
(
3
), pp.
749
759
.
34.
Eppinger
,
S.
, and
Browning
,
T. R.
,
2012
,
Design Structure Matrix Methods and Applications
,
The MIT Press
,
Cambridge, MA
.
35.
NASA Headquarters, 2016, “NASA Systems Engineering Handbook,” Technical Report No. NASA SP-2016-6105 Rev2, NASA, Washington, DC.
36.
Kossiakoff
,
A.
,
Sweet
,
W. N.
,
Seymour
,
S.
, and
Biemer
,
S. M.
,
2011
,
Systems Engineering Principles and Practice
, 2nd ed.,
Wiley-Interscience
,
Hoboken, N.J
.
37.
Bijan
,
Y.
,
Yu
,
J.
,
Stracener
,
J.
, and
Woods
,
T.
,
2013
, “
Systems Requirements Engineering–State of the Methodology
,”
Syst. Eng.
,
16
(
3
), pp.
267
276
.
38.
Ulrich
,
K.
,
1995
, “
The Role of Product Architecture in the Manufacturing Firm
,”
Res. Policy
,
24
(
3
), pp.
419
440
.
39.
Haskins
,
C.
,
Forsberg
,
K.
,
Krueger
,
M.
,
Walden
,
D.
, and
Hamelin
,
D.
,
2007
, “INCOSE Systems Engineering Handbook v3.1: A Guide for System Life Cycle Processes and Activities,” Technical Report No. INCOSE-TP-2003-002-03.1, International Council on Systems Engineering.
40.
Sommer
,
A. F.
,
2019
, “
Agile Transformation At LEGO Group
,”
Res.-Technol. Manage.
,
62
(
5
), pp.
20
29
.
41.
Aughenbaugh
,
J. M.
, and
Paredis
,
C. J. J.
,
2004
, “
The Role and Limitations of Modeling and Simulation in Systems Design
,”
ASME 2004 International Mechanical Engineering Congress and Exposition
,
Anaheim, CA
,
Nov. 13–19
, pp.
13
22
.
42.
Topcu
,
T. G.
, and
Mesmer
,
B. L.
,
2018
, “
Incorporating End-User Models and Associated Uncertainties to Investigate Multiple Stakeholder Preferences in System Design
,”
Res. Eng. Des.
,
29
(
3
), pp.
411
431
.
43.
Salado
,
A.
, and
Nilchiani
,
R.
,
2016
, “
The Concept of Order of Conflict in Requirements Engineering
,”
IEEE Syst. J.
,
10
(
1
), pp.
25
35
.
44.
Abbas
,
A. E.
, and
Matheson
,
J. E.
,
2009
, “
Normative Decision Making With Multiattribute Performance Targets
,”
J. Multi-Criteria Decision Anal.
,
16
(
3–4
), pp.
67
78
.
45.
Grogan
,
P. T.
, and
Valencia-Romero
,
A.
,
2019
, “
Strategic Risk Dominance in Collective Systems Design
,”
Des. Sci.
,
5
(
e24
).
46.
Martins
,
J. R. R. A.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA. J.
,
51
(
9
), pp.
2049
2075
.
47.
Lee
,
B. D.
,
Binder
,
W. R.
, and
Paredis
,
C. J. J.
,
2014
, “
A Systematic Method for Specifying Effective Value Models
,”
Procedia Comput. Sci.
,
28
, pp.
228
236
.
48.
Weigel
,
A. L.
, and
Hastings
,
D. E.
,
2004
, “
Measuring the Value of Designing for Uncertain Future Downward Budget Instabilities
,”
J. Spacecr. Rockets
,
41
(
1
), pp.
111
119
.
49.
Malak
,
R. J.
,
Baxter
,
B.
, and
Hsiao
,
C.
,
2015
, “
A Decision-based Perspective on Assessing System Robustness
,”
Procedia Comput. Sci.
,
44
, pp.
619
629
.
50.
Lifshitz-Assaf
,
H.
,
Szajnfarber
,
Z.
, and
Tushman
,
M.
,
2022
, “What Is Your Problem?! Translating, Decontextualizing and Recontextualizing Problems for Cross Boundary Innovation,” SSRN Scholarly Paper ID 4034729, Social Science Research Network, Rochester, NY.
51.
Jeppesen
,
L. B.
, and
Lakhani
,
K. R.
,
2010
, “
Marginality and Problem-Solving Effectiveness in Broadcast Search
,”
Organ. Sci.
,
21
(
5
), pp.
1016
1033
.
52.
Szajnfarber
,
Z.
,
Topcu
,
T. G.
, and
Lifshitz-Assaf
,
H.
,
2022
, “
Towards a Solver-Aware Systems Architecting Framework: Leveraging Experts, Specialists and the Crowd to Design Innovative Complex Systems
,”
Des. Sci.
,
8
(
e10
).
53.
Shergadwala
,
M. N.
,
Panchal
,
J. H.
, and
Bilionis
,
I.
,
2022
, “
How Does Past Performance of Competitors Influence Designers’ Cognition, Behaviors, and Outcomes?
ASME J. Mech. Des.
,
144
(
10
), p.
101401
.
54.
Maier
,
A. M.
, and
Störrle
,
H.
,
2011
, “
What Are the Characteristics of Engineering Design Processes
,”
International Conference on Engineering Design
,
Copenhagen, Denmark
,
Aug. 15–18
, pp.
188
198
.
55.
Yassine
,
A.
,
Joglekar
,
N.
,
Braha
,
D.
,
Eppinger
,
S.
, and
Whitney
,
D.
,
2003
, “
Information Hiding in Product Development: The Design Churn Effect
,”
Res. Eng. Des.
,
14
(
3
), pp.
145
161
.
56.
Gustetic
,
J. L.
,
Crusan
,
J.
,
Rader
,
S.
, and
Ortega
,
S.
,
2015
, “
Outcome-Driven Open Innovation At NASA
,”
Space Policy
,
34
(
Supplement C
), pp.
11
17
.
57.
Loch
,
C.
,
Mihm
,
J.
, and
Huchzermeier
,
A.
,
2003
, “
Concurrent Engineering and Design Oscillations in Complex Engineering Projects
,”
Concurr. Eng.
,
11
(
3
), pp.
187
199
.
58.
von Hippel
,
E.
,
1994
, “
Sticky Information and the Locus of Problem Solving: Implications for Innovation
,”
Manage. Sci.
,
40
(
4
), pp.
429
439
.
59.
Carlile
,
P. R.
,
2004
, “
Transferring, Translating, and Transforming: An Integrative Framework for Managing Knowledge Across Boundaries
,”
Organ. Sci.
,
15
(
5
), pp.
555
568
.
60.
Einstein
,
A.
, and
Infeld
,
L.
,
1938
,
Evolution of Physics
,
Simon and Schuster
,
New York, NY
.
61.
Szajnfarber
,
Z.
, and
Gralla
,
E.
,
2017
, “
Qualitative Methods for Engineering Systems: Why We Need Them and How to Use Them
,”
Syst. Eng.
,
20
(
6
), pp.
497
511
.
62.
Miles
,
M. B.
, and
Huberman
,
A. M.
,
1994
,
Qualitative Data Analysis: An Expanded Sourcebook
,
SAGE
.
63.
Vrolijk
,
A-P.
,
2022
, “
Towards a Better Understanding of Solving Complex Problems Through Innovation Contests
,” Ph.D. thesis,
The George Washington University
,
Washington, DC
.
64.
Langley
,
A.
,
1999
, “
Strategies for Theorizing from Process Data
,”
Acad. Manage. Rev.
,
24
(
4
), pp.
691
710
.
65.
Strauss
,
A.
, and
Corbin
,
J. M.
,
1990
,
Basics of Qualitative Research: Grounded Theory Procedures and Techniques
(
Basics of Qualitative Research: Grounded Theory Procedures and Techniques
),
Sage Publications, Inc.
,
Thousand Oaks, CA
.
66.
Kaindl
,
H.
,
Brinkkemper
,
S.
,
Bubenko Jr
,
J. A.
,
Farbey
,
B.
,
Greenspan
,
S. J.
,
Heitmeyer
,
C. L.
,
Leite
,
J. C. S.d.P.
,
Mead
,
N. R.
,
Mylopoulos
,
J.
, and
Siddiqi
,
J.
,
2002
, “
Requirements Engineering and Technology Transfer: Obstacles, Incentives and Improvement Agenda
,”
Requirements Eng.
,
7
(
3
), pp.
113
123
.
67.
Rader
,
S.
, and
Kaminski
,
A. P.
,
2020
, “A Virtual Laboratory for Open Innovation in Space Exploration: The NASA Tournament Lab,”
The New Potential for Interactive Value Creation Across Organizational Boundaries
,
A.
Fritzsche
,
J. M.
Jonas
,
A.
Roth
, and
K. M. M
oslein
, eds.,
De Gruyter Oldenbourg
,
Berlin, Boston
, pp.
253
262
.
You do not currently have access to this content.