Abstract

The moment method is commonly used in reliability analysis, in which the maximum entropy method (MEM) and polynomial fitting (PF) have been widely used due to their advantages in accuracy and efficiency, respectively. In this paper, we propose a novel reliability analysis method by combining MEM and PF. The probability density function is preliminarily estimated using the fractional moment maximum entropy method (FM-MEM), based on which PF is then used to further improve the accuracy. The proposed method can avoid the phenomenon of the negative probability density and function oscillations in PF effectively. Moreover, the order of the exponential polynomial in the FM-MEM is adaptively selected in the preliminary solution calculation process. An iterative process for the number of exponential polynomial terms is also proposed, using the integral of the moment error function and the integrals of the local and global negative probability density as the convergence criteria. Four numerical examples and one engineering example are tested, and the results are compared with those of the Monte Carlo simulation and the classical FM-MEM results, respectively, demonstrating the good performance of the proposed method.

References

1.
Wu
,
H.
,
Zhu
,
Z.
, and
Du
,
X.
,
2020
, “
System Reliability Analysis With Autocorrelated Kriging Predictions
,”
ASME J. Mech. Des.
,
142
(
10
), p.
101702
.
2.
Xiao
,
N. C.
,
Zuo
,
M. J.
, and
Zhou
,
C.
,
2018
, “
A New Adaptive Sequential Sampling Method to Construct Surrogate Models for Efficient Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
169
, pp.
330
338
.
3.
Wu
,
H.
,
Xu
,
Y.
,
Liu
,
Z.
,
Li
,
Y.
, and
Wang
,
P.
,
2023
, “
Adaptive Machine Learning With Physics-Based Simulations for Mean Time to Failure Prediction of Engineering Systems
,”
Reliab. Eng. Syst. Saf.
,
240
, p.
109553
.
4.
Du
,
X. P.
, and
Sudjianto
,
A.
,
2004
, “
First-Order Saddlepoint Approximation for Reliability Analysis
,”
AIAA J.
,
42
(
6
), pp.
1199
1207
.
5.
Meng
,
Z.
,
Li
,
G.
,
Yang
,
D.
, and
Zhan
,
L.
,
2017
, “
A New Directional Stability Transformation Method of Chaos Control for First Order Reliability Analysis
,”
Struct. Multidiscip. Optim.
,
55
(
2
), pp.
601
612
.
6.
Xu
,
J.
, and
Dang
,
C.
,
2019
, “
A Novel Fractional Moments-Based Maximum Entropy Method for High-Dimensional Reliability Analysis
,”
Appl. Math. Model.
,
75
, pp.
749
768
.
7.
Wu
,
H.
, and
Du
,
X.
,
2020
, “
System Reliability Analysis With Second Order Saddlepoint Approximation
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng.
,
6
(
4
), p.
041001
.
8.
Li
,
G.
, and
Zhang
,
K.
,
2011
, “
A Combined Reliability Analysis Approach With Dimension Reduction Method and Maximum Entropy Method
,”
Struct. Multidiscip. Optim.
,
43
(
1
), pp.
121
134
.
9.
Xu
,
L.
, and
Cheng
,
G. D.
,
2003
, “
Discussion on: Moment Methods for Structural Reliability
,”
Struct. Saf.
,
25
(
2
), pp.
193
199
.
10.
Youn
,
B. D.
,
Xi
,
Z.
, and
Wang
,
P.
,
2008
, “
Eigenvector Dimension Reduction (Edr) Method for Sensitivity-Free Probability Analysis
,”
Struct. Multidiscip. Optim.
,
37
(
1
), pp.
13
28
.
11.
Acar
,
E.
,
Rais-Rohani
,
M.
, and
Eamon
,
C. D.
,
2010
, “
Reliability Estimation Using Univariate Dimension Reduction and Extended Generalised Lambda Distribution
,”
Int. J. Reliab. Qual. Saf. Eng.
,
4
(
2–3
), pp.
166
187
.
12.
Huang
,
B.
, and
Du
,
X.
,
2006
, “
Uncertainty Analysis by Dimension Reduction Integration and Saddlepoint Approximations
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
26
33
.
13.
Joakim
,
M.
,
Lars
,
M.
, and
Jesper
,
R.
,
2017
, “
Polynomial Probability Distribution Estimation Using the Method of Moments
,”
PLoS One
,
12
(
4
), p.
e0174573
.
14.
Gzyl
,
H.
, and
Tagliani
,
A.
,
2010
, “
Hausdorff Moment Problem and Fractional Moments
,”
Appl. Math. Comput.
,
216
(
11
), pp.
3319
3328
.
15.
Zhang
,
X.
, and
Pandey
,
M. D.
,
2013
, “
Structural Reliability Analysis Based on the Concepts of Entropy, Fractional Moment and Dimensional Reduction Method
,”
Struct. Saf.
,
43
, pp.
28
40
.
16.
Xu
,
J.
, and
Kong
,
F.
,
2019
, “
Adaptive Scaled Unscented Transformation for Highly Efficient Structural Reliability Analysis by Maximum Entropy Method
,”
Struct. Saf.
,
76
, pp.
123
134
.
17.
Alibrandi
,
U.
, and
Mosalam
,
K. M.
,
2018
, “
Kernel Density Maximum Entropy Method With Generalized Moments for Evaluating Probability Distributions, Including Tails, From a Small Sample of Data
,”
Int. J. Numer. Methods Eng.
,
113
(
13
), pp.
1904
1928
.
18.
Zhang
,
X.
,
He
,
W.
,
Zhang
,
Y.
, and
Pandey
,
M. D.
,
2017
, “
An Effective Approach for Probabilistic Lifetime Modelling Based on the Principle of Maximum Entropy With Fractional Moments
,”
Appl. Math. Model.
,
51
, pp.
626
642
.
19.
Li
,
G.
,
He
,
W.
, and
Zeng
,
Y.
,
2019
, “
An Improved Maximum Entropy Method Via Fractional Moments With Laplace Transform for Reliability Analysis
,”
Struct. Multidiscip. Optim.
,
59
(
4
), pp.
1301
1320
.
20.
Jondeau
,
E.
, and
Rockinger
,
M.
,
2001
, “
Gram-Charlier Densities
,”
J. Econ. Dyn. Control
,
25
(
10
), pp.
1457
1483
.
21.
Yim
,
J. Z.
,
Chou
,
C. R.
, and
Huang
,
W. P.
,
2000
, “
A Study on the Distributions of the Measured Fluctuating Wind Velocity Components
,”
Atmos. Environ.
,
34
(
10
), pp.
1583
1590
.
22.
Kapur
,
J. N.
, and
Kesavan
,
H. K.
,
1992
, “
Entropy Optimization Principles and Their Applications
,”
International Conf on Entropy and Energy Dissipation
,
Maratea, Italy
,
June 26–28, 1991
, pp.
3
20
.
23.
Tagliani
,
A.
,
2001
, “
Discrete Probability Distributions and Moment Problem: Numerical Aspects
,”
Appl. Math. Comput.
,
119
(
1
), pp.
47
56
.
24.
Lagarias
,
J. C.
,
Reeds
,
J. A.
,
Wright
,
M. H.
, and
Wright
,
P. E.
,
1998
, “
Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions
,”
SIAM J. Optim.
,
9
(
1
), pp.
112
147
.
25.
Zhang
,
M.
,
2009
,
Structural Reliability Analysis: Methods and Procedures
,
Science Press
,
China
(in Chinese).
26.
Tong
,
X.
, and
Zhao
,
G.
,
1997
, “
Improved Rosenblueth Method and Its Application to Structural Reliability Analysis
,”
Dalian Univ. Tech.
,
37
(
3
), pp.
316
321
(in Chinese).
27.
Song
,
S.
,
Lu
,
Z.
, and
Qiao
,
H.
,
2009
, “
Subset Simulation for Structural Reliability Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
94
(
2
), pp.
658
665
.
28.
Tejani
,
G. G.
,
Pholdee
,
N.
,
Bureerat
,
S.
,
Prayogo
,
D.
, and
Gandomi
,
A. H.
,
2019
, “
Structural Optimization Using Multi-Objective Modified Adaptive Symbiotic Organisms Search
,”
Expert Syst. Appl.
,
125
, pp.
425
441
.
You do not currently have access to this content.