Abstract

Neural networks have gained popularity for modeling complex non-linear relationships. Their computational efficiency has led to their growing adoption in optimization methods, including topology optimization. Recently, there have been several contributions toward improving derivatives of neural network outputs, which can improve their use in gradient-based optimization. However, a comparative study has yet to be conducted on the different derivative methods for the sensitivity of the input features on the neural network outputs. This paper aims to evaluate four derivative methods: analytical neural network’s Jacobian, central finite difference method, complex step method, and automatic differentiation. These methods are implemented into density-based and homogenization-based topology optimization using multilayer perceptrons (MLPs). For density-based topology optimization, the MLP approximates Young’s modulus for the solid isotropic material with penalization (SIMP) model. For homogenization-based topology optimization, the MLP approximates the homogenized stiffness tensor of a representative volume element, e.g., square cell microstructure with a rectangular hole. The comparative study is performed by solving two-dimensional topology optimization problems using the sensitivity coefficients from each derivative method. Evaluation includes initial sensitivity coefficients, convergence plots, and the final topologies, compliance, and design variables. The findings demonstrate that neural network-based sensitivity coefficients are sufficiently accurate for density-based and homogenization-based topology optimization. The neural network’s Jacobian, complex step method, and automatic differentiation produced identical sensitivity coefficients to working precision. The study’s open-source code is provided through a python repository.

References

1.
Das
,
L.
,
Sivaram
,
A.
, and
Venkatasubramanian
,
V.
,
2020
, “
Hidden Representations in Deep Neural Networks: Part 2. Regression Problems
,”
Comput. Chem. Eng.
,
139
, p.
106895
.
2.
Buntine
,
W. L.
, and
Weigend
,
A. S.
,
1994
, “
Computing Second Derivatives in Feed-Forward Networks: A Review
,”
IEEE Trans. Neural Netw.
,
5
(
3
), pp.
480
488
.
3.
Iserles
,
A.
,
2009
,
A First Course in the Numerical Analysis of Differential Equations
,
Cambridge University Press
,
Cambridge, UK
.
4.
Martins
,
J. R.
,
Sturdza
,
P.
, and
Alonso
,
J. J.
,
2003
, “
The Complex-Step Derivative Approximation
,”
ACM Trans. Math. Softw.
,
29
(
3
), pp.
245
262
.
5.
Margossian
,
C. C.
,
2019
, “
A Review of Automatic Differentiation and Its Efficient Implementation
,”
Wiley Interdiscipl. Rev.: Data Mining Knowl. Discov.
,
9
(
4
), p.
e1305
.
6.
Rozvany
,
G. I. N.
,
2009
, “
A Critical Review of Established Methods of Structural Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
37
(
3
), pp.
217
237
.
7.
Kissel
,
M.
, and
Diepold
,
K.
,
2020
, “
Sobolev Training With Approximated Derivatives for Black-Box Function Regression With Neural Networks
,”
Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD)
,
Virtual Conference
,
Sept. 14–18
, Vol. pt. II, Springer International Publishing, pp.
399
414
.
8.
Avrutskiy
,
V. I.
,
2021
, “
Enhancing Function Approximation Abilities of Neural Networks by Training Derivatives
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
32
(
2
), pp.
916
924
.
9.
Kiran
,
R.
, and
Naik
,
D. L.
,
2021
, “
Novel Sensitivity Method for Evaluating the First Derivative of the Feed-Forward Neural Network Outputs
,”
J. Big Data
,
8
(
1
), pp.
1
13
.
10.
Ledesma
,
S.
,
Almanza-Ojeda
,
D.-L.
,
Ibarra-Manzano
,
M.-A.
,
Yepez
,
E. C.
,
Avina-Cervantes
,
J. G.
, and
Fallavollita
,
P.
,
2020
, “
Differential Neural Networks (DNN)
,”
IEEE Access
,
8
, pp.
156530
156538
.
11.
Rodini
,
S.
,
2022
, “
Analytical Derivatives of Neural Networks
,”
Comput. Phys. Commun.
,
270
, p.
108169
.
12.
Deng
,
H.
, and
To
,
A. C.
,
2021
, “
A Parametric Level Set Method for Topology Optimization Based on Deep Neural Network
,”
ASME J. Mech. Des.
,
143
(
9
), p.
091702
.
13.
Shu
,
D.
,
Cunningham
,
J.
,
Stump
,
G.
,
Miller
,
S. W.
,
Yukish
,
M. A.
,
Simpson
,
T. W.
, and
Tucker
,
C. S.
,
2019
, “
3D Design Using Generative Adversarial Networks and Physics-Based Validation
,”
ASME J. Mech. Des.
,
142
(
7
), p.
071701
.
14.
Woldseth
,
R. V.
,
Aage
,
N.
,
Bærentzen
,
J. A.
, and
Sigmund
,
O.
,
2022
, “
On the Use of Artificial Neural Networks in Topology Optimisation
,”
Struct. Multidiscipl. Optim.
,
65
(
10
), p.
294
.
15.
Takahashi
,
Y.
,
Suzuki
,
Y.
, and
Todoroki
,
A.
,
2019
, “Convolutional Neural Network-Based Topology Optimization (CNN-TO) By Estimating Sensitivity of Compliance From Material Distribution,” https://arxiv.org/abs/2001.00635, pp.
1
12
.
16.
Watts
,
S.
,
Arrighi
,
W.
,
Kudo
,
J.
,
Tortorelli
,
D. A.
, and
White
,
D. A.
,
2019
, “
Simple Accurate Surrogate Models of the Elastic Response of Three-Dimensional Open Truss Micro-architectures With Applications to Multiscale Topology Design
,”
Struct. Multidiscipl. Optim.
,
60
(
5
), pp.
1887
1920
.
17.
Zhang
,
Y.
,
Li
,
H.
,
Xiao
,
M.
,
Gao
,
L.
,
Chu
,
S.
, and
Zhang
,
J. H.
,
2019
, “
Concurrent Topology Optimization for Cellular Structures With Nonuniform Microstructures Based on the Kriging Metamodel
,”
Struct. Multidiscipl. Optim.
,
59
(
4
), pp.
1273
1299
.
18.
Zhang
,
Y.
,
Gao
,
L.
, and
Xiao
,
M.
,
2020
, “
Maximizing Natural Frequencies of Inhomogeneous Cellular Structures by Kriging-Assisted Multiscale Topology Optimization
,”
Comput. Struct.
,
230
, pp.
1
24
.
19.
Zhang
,
Y.
,
Xiao
,
M.
,
Gao
,
L.
,
Gao
,
J.
, and
Li
,
H.
,
2020
, “
Multiscale Topology Optimization for Minimizing Frequency Responses of Cellular Composites With Connectable Graded Microstructures
,”
Mech. Syst. Signal Process.
,
135
, p.
106369
.
20.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
21.
Pantz
,
O.
, and
Trabelsi
,
K.
,
2008
, “
A Post-Treatment of the Homogenization Method for Shape Optimization
,”
SIAM J. Control Optim.
,
47
(
3
), pp.
1380
1398
.
22.
Groen
,
J. P.
, and
Sigmund
,
O.
,
2018
, “
Homogenization-Based Topology Optimization for High-Resolution Manufacturable Microstructures
,”
Int. J. Numer. Methods Eng.
,
113
(
8
), pp.
1148
1163
.
23.
Allaire
,
G.
,
Geoffroy-Donders
,
P.
, and
Pantz
,
O.
,
2019
, “
Topology Optimization of Modulated and Oriented Periodic Microstructures by the Homogenization Method
,”
Comput. Math. Appl.
,
78
(
7
), pp.
2197
2229
.
24.
Zhu
,
Y. C.
,
Li
,
S. S.
,
Du
,
Z. L.
,
Liu
,
C.
,
Guo
,
X.
, and
Zhang
,
W. S.
,
2019
, “
A Novel Asymptotic-Analysis-Based Homogenisation Approach Towards Fast Design of Infill Graded Microstructures
,”
J. Mech. Phys. Solids
,
124
, pp.
612
633
.
25.
Li
,
D. W.
,
Dai
,
N.
,
Tang
,
Y. L.
,
Dong
,
G. Y.
, and
Zhao
,
Y. F.
,
2019
, “
Design and Optimization of Graded Cellular Structures With Triply Periodic Level Surface-Based Topological Shapes
,”
ASME J. Mech. Des.
,
141
(
7
), p.
071402
.
26.
Wang
,
C.
,
Zhu
,
J. H.
,
Zhang
,
W. H.
,
Li
,
S. Y.
, and
Kong
,
J.
,
2018
, “
Concurrent Topology Optimization Design of Structures and Non-uniform Parameterized Lattice Microstructures
,”
Struct. Multidiscipl. Optim.
,
58
(
1
), pp.
35
50
.
27.
Imediegwu
,
C.
,
Murphy
,
R.
,
Hewson
,
R.
, and
Santer
,
M.
,
2019
, “
Multiscale Structural Optimization Towards Three-Dimensional Printable Structures
,”
Struct. Multidiscipl. Optim.
,
60
(
2
), pp.
513
525
.
28.
White
,
D. A.
,
Arrighi
,
W. J.
,
Kudo
,
J.
, and
Watts
,
S. E.
,
2019
, “
Multiscale Topology Optimization Using Neural Network Surrogate Models
,”
Comput. Methods Appl. Mech. Eng.
,
346
, pp.
1118
1135
.
29.
Black
,
N.
, and
Najafi
,
A. R.
,
2023
, “
Deep Neural Networks for Parameterized Homogenization in Concurrent Multiscale Structural Optimization
,”
Struct. Multidiscipl. Optim.
,
66
(
1
), p.
20
.
30.
Zheng
,
L.
,
Kumar
,
S.
, and
Kochmann
,
D. M.
,
2021
, “
Data-Driven Topology Optimization of Spinodoid Metamaterials With Seamlessly Tunable Anisotropy
,”
Comput. Methods Appl. Mech. Eng.
,
383
, p.
113894
.
31.
Rastegarzadeh
,
S.
,
Wang
,
J.
, and
Huang
,
J.
,
2023
, “
Neural Network-Assisted Design: A Study of Multiscale Topology Optimization With Smoothly Graded Cellular Structures
,”
ASME J. Mech. Des.
,
145
(
1
), p.
011701
.
32.
Rozvany
,
G. I. N.
,
Zhou
,
M.
, and
Birker
,
T.
,
1992
, “
Generalized Shape Optimization Without Homogenization
,”
Struct. Optim.
,
4
(
3–4
), pp.
250
252
.
33.
Andreassen
,
E.
, and
Andreasen
,
C. S.
,
2014
, “
How to Determine Composite Material Properties Using Numerical Homogenization
,”
Comput. Mater. Sci.
,
83
, pp.
488
495
.
34.
McClure
,
N.
,
2017
,
TensorFlow Machine Learning Cookbook
,
PACKT Publishing Ltd
,
Birmingham, UK
.
35.
Liu
,
W.
,
Wang
,
Z.
,
Liu
,
X.
,
Zeng
,
N.
,
Liu
,
Y.
, and
Alsaadi
,
F. E.
,
2017
, “
A Survey of Deep Neural Network Architectures and Their Applications
,”
Neurocomputing
,
234
, pp.
11
26
.
36.
Kaup
,
L.
, and
Kaup
,
B.
,
2011
,
Holomorphic Functions of Several Variables: An Introduction to the Fundamental Theory
,
Walter de Gruyter
,
Berlin, New York
.
37.
Squire
,
W.
, and
Trapp
,
G.
,
1998
, “
Using Complex Variables to Estimate Derivatives of Real Functions
,”
SIAM Rev.
,
40
(
1
), pp.
110
112
.
38.
Neidinger
,
R. D.
,
2010
, “
Introduction to Automatic Differentiation and MATLAB Object-Oriented Programming
,”
SIAM Rev.
,
52
(
3
), pp.
545
563
.
39.
Abadi
,
M.
,
Barham
,
P.
,
Chen
,
J.
,
Chen
,
Z.
,
Davis
,
A.
,
Dean
,
J.
,
Devin
,
M.
,
Ghemawat
,
S.
,
Irving
,
G.
, and
Isard
,
M.
,
2016
, “
TensorFlow: A System for Large-Scale Machine Learning
,”
12th USENIX symposium on operating systems design and implementation (OSDI 16)
,
Savannah, GA
,
Nov. 2–4
, pp.
265
283
.
40.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
,
Burovski
,
E.
,
Peterson
,
P.
,
Weckesser
,
W.
, and
Bright
,
J.
,
2020
, “
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods
,
17
(
3
), pp.
261
272
.
41.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
,
25
(
4
), pp.
493
524
.
42.
Li
,
L.
,
Jamieson
,
K.
,
DeSalvo
,
G.
,
Rostamizadeh
,
A.
, and
Talwalkar
,
A.
,
2017
, “
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
,”
J. Mach. Learn. Res.
,
18
(
1
), pp.
6765
6816
.
43.
Ruder
,
S.
,
2016
, “An Overview of Gradient Descent Optimization Algorithms,” https://arxiv.org/abs/1609.04747, pp.
1
14
.
44.
Najmon
,
J.
, and
Tovar
,
A.
,
2023
, “
Comparing Derivatives of Neural Networks for Regression
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC-CIE)
,
Boston, MA
,
Aug. 20–23
, American Society of Mechanical Engineers, pp.
1
7
.
You do not currently have access to this content.