Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

When performing time-intensive optimization tasks, such as those in topology or shape optimization, researchers have turned to machine-learned inverse design (ID) methods—i.e., predicting the optimized geometry from input conditions—to replace or warm start traditional optimizers. Such methods are often optimized to reduce the mean squared error (MSE) or binary cross entropy between the output and a training dataset of optimized designs. While convenient, we show that this choice may be myopic. Specifically, we compare two methods of optimizing the hyperparameters of easily reproducible machine learning models including random forest, k-nearest neighbors, and deconvolutional neural network model for predicting the three optimal topology problems. We show that under both direct inverse design and when warm starting further topology optimization, using MSE metrics to tune hyperparameters produces less performance models than directly evaluating the objective function, though both produce designs that are almost one order of magnitude better than using the common uniform initialization. We also illustrate how warm starting impacts both the convergence time, the type of solutions obtained during optimization, and the final designs. Overall, our initial results portend that researchers may need to revisit common choices for evaluating ID methods that subtly tradeoff factors in how an ID method will actually be used. We hope our open-source dataset and evaluation environment will spur additional research in those directions.

References

1.
Lee
,
X. Y.
,
Balu
,
A.
,
Stoecklein
,
D.
,
Ganapathysubramanian
,
B.
, and
Sarkar
,
S.
,
2019
, “
A Case Study of Deep Reinforcement Learning for Engineering Design: Application to Microfluidic Devices for Flow Sculpting
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111401
.
2.
Shi
,
X.
,
Qiu
,
T.
,
Wang
,
J.
,
Zhao
,
X.
, and
Qu
,
S.
,
2020
, “
Metasurface Inverse Design Using Machine Learning Approaches
,”
J. Phys. D: Appl. Phys.
,
53
(
27
), p.
275105
.
3.
Andreassen
,
E.
,
Clausen
,
A.
,
Schevenels
,
M.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
Efficient Topology Optimization in MATLAB Using 88 Lines of Code
,”
Struct. Multidiscipl. Optim.
,
43
(
1
), pp.
1
16
.
4.
Topology Optimisation of Heat Conduction Problems Governed by the Poisson Equation. http://www.dolfin-adjoint.org/en/latest/documentation/poisson-topology/poisson-topology.html. Accessed February 10, 2022.
5.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods, and Applications
,
Springer Science & Business Media
.
6.
Chen
,
Q.
,
Wang
,
J.
,
Pope
,
P.
,
Chen
,
W. W.
, and
Fuge
,
M.
,
2022
, “
Inverse Design of 2D Airfoils Using Conditional Generative Models and Surrogate Log-Likelihoods
,”
ASME J. Mech. Des.
,
144
(
5
), p.
053302
.
7.
Kim
,
B.
,
Lee
,
S.
, and
Kim
,
J.
,
2020
, “
Inverse Design of Porous Materials Using Artificial Neural Networks
,”
Sci. Adv.
,
6
(
1
), p.
eaax9324
.
8.
Kim
,
S.
,
Noh
,
J.
,
Gu
,
G. H.
,
Aspuru-Guzik
,
A.
, and
Jung
,
Y.
,
2020
, “
Generative Adversarial Networks for Crystal Structure Prediction
,”
ACS Central Sci.
,
6
(
8
), pp.
1412
1420
.
9.
Challapalli
,
A.
,
Patel
,
D.
, and
Li
,
G.
,
2021
, “
Inverse Machine Learning Framework for Optimizing Lightweight Metamaterials
,”
Mater. Des.
,
208
, p.
109937
.
10.
Huang
,
Z.
,
Liu
,
X.
, and
Zang
,
J.
,
2019
, “
The Inverse Design of Structural Color Using Machine Learning
,”
Nanoscale
,
11
(
45
), pp.
21748
21758
.
11.
Liu
,
Z.
,
Zhu
,
D.
,
Raju
,
L.
, and
Cai
,
W.
,
2021
, “
Tackling Photonic Inverse Design With Machine Learning
,”
Adv. Sci.
,
8
(
5
), p.
2002923
.
12.
Wiecha
,
P. R.
,
Arbouet
,
A.
,
Girard
,
C.
, and
Muskens
,
O. L.
,
2021
, “
Deep Learning in Nano-Photonics: Inverse Design and Beyond
,”
Photon. Res.
,
9
(
5
), pp.
B182
B200
.
13.
So
,
S.
, and
Rho
,
J.
,
2019
, “
Designing Nanophotonic Structures Using Conditional Deep Convolutional Generative Adversarial Networks
,”
Nanophotonics
,
8
(
7
), pp.
1255
1261
.
14.
Jiang
,
J.
, and
Fan
,
J. A.
,
2020
, “
Simulator-Based Training of Generative Neural Networks for the Inverse Design of Metasurfaces
,”
Nanophotonics
,
9
(
5
), pp.
1059
1069
.
15.
Sanchez-Lengeling
,
B.
,
Outeiral
,
C.
,
Guimaraes
,
G. L.
, and
Aspuru-Guzik
,
A.
,
2017
, “
Optimizing Distributions Over Molecular Space. An Objective-Reinforced Generative Adversarial Network for Inverse-Design Chemistry (Organic)
”.
16.
Jin
,
Z.
,
Zhang
,
Z.
,
Demir
,
K.
, and
Gu
,
G. X.
,
2020
, “
Machine Learning for Advanced Additive Manufacturing
,”
Matter
,
3
(
5
), pp.
1541
1556
.
17.
Sekar
,
V.
,
Zhang
,
M.
,
Shu
,
C.
, and
Khoo
,
B. C.
,
2019
, “
Inverse Design of Airfoil Using a Deep Convolutional Neural Network
,”
AIAA J.
,
57
(
3
), pp.
993
1003
.
18.
Ongie
,
G.
,
Jalal
,
A.
,
Metzler
,
C. A.
,
Baraniuk
,
R. G.
,
Dimakis
,
A. G.
, and
Willett
,
R.
,
2020
, “
Deep Learning Techniques for Inverse Problems in Imaging
,”
IEEE J. Sel. Areas Inf. Theory
,
1
(
1
), pp.
39
56
.
19.
Kim
,
I.
,
Park
,
S. J.
,
Jeong
,
C.
,
Shim
,
M.
,
Kim
,
D. S.
,
Kim
,
G.-T.
, and
Seok
,
J.
,
2022
, “
Simulator Acceleration and Inverse Design of Fin Field-Effect Transistors Using Machine Learning
,”
Sci. Rep.
,
12
(
1
), pp.
1
9
.
20.
Hegde
,
R.
,
2021
, “
Sample-Efficient Deep Learning for Accelerating Photonic Inverse Design
,”
OSA Contin.
,
4
(
3
), pp.
1019
1033
.
21.
Klaučo
,
M.
,
Kalúz
,
M.
, and
Kvasnica
,
M.
,
2019
, “
Machine Learning-Based Warm Starting of Active Set Methods in Embedded Model Predictive Control
,”
Eng. Appl. Artif. Intell.
,
77
, pp.
1
8
.
22.
Nie
,
Z.
,
Lin
,
T.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2021
, “
Topologygan: Topology Optimization Using Generative Adversarial Networks Based on Physical Fields Over the Initial Domain
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031715
.
23.
Wang
,
D.
,
Xiang
,
C.
,
Pan
,
Y.
,
Chen
,
A.
,
Zhou
,
X.
, and
Zhang
,
Y.
,
2022
, “
A Deep Convolutional Neural Network for Topology Optimization With Perceptible Generalization Ability
,”
Eng. Optim.
,
54
(
6
), pp.
973
988
.
24.
Mazé
,
F.
, and
Ahmed
,
F.
,
2023
, “
Diffusion Models Beat GANS on Topology Optimization
,”
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)
,
Washington, DC
,
Feb. 7
.
25.
Giannone
,
G.
,
Srivastava
,
A.
,
Winther
,
O.
, and
Ahmed
,
F.
,
2023
, “
Aligning Optimization Trajectories With Diffusion Models For Constrained Design Generation
,”
Advances in Neural Information Processing Systems
,
New Orleans, FL
,
Feb. 13
.
26.
Regenwetter
,
L.
,
Nobari
,
A. H.
, and
Ahmed
,
F.
,
2022
, “
Deep Generative Models in Engineering Design: A Review
,”
ASME J. Mech. Des.
,
144
(
7
), p.
071704
.
27.
Habibi
,
M.
,
Wang
,
J.
, and
Fuge
,
M.
,
2023
, “
When Is It Actually Worth Learning Inverse Design?
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
87301
,
American Society of Mechanical Engineers
, p.
V03AT03A025
.
28.
Regenwetter
,
L.
,
Weaver
,
C.
, and
Ahmed
,
F.
,
2023
, “
Framed: An Automl Approach for Structural Performance Prediction of Bicycle Frames
,”
Comput.-Aided Des.
,
156
(
C
), p.
103446
.
29.
Mehmani
,
A.
,
Chowdhury
,
S.
,
Meinrenken
,
C.
, and
Messac
,
A.
,
2018
, “
Concurrent Surrogate Model Selection (COSMOS): Optimizing Model Type, Kernel Function, and Hyper-parameters
,”
Struct. Multidiscipl. Optim.
,
57
(
3
), pp.
1093
1114
.
30.
Jiang
,
X.
,
Wang
,
H.
,
Li
,
Y.
, and
Mo
,
K.
,
2020
, “
Machine Learning Based Parameter Tuning Strategy for MMC Based Topology Optimization
,”
Adv. Eng. Softw.
,
149
, p.
102841
.
31.
Li
,
J. K.
, and
Zhang
,
Y. M.
,
2011
, “
Method of Continuum Structural Topology Optimization With Information Functional Materials Based on K Nearest Neighbor
,”
Adv. Mater. Res.
,
321
, pp.
200
203
. www.scientific.net/AMR.321.200
32.
Jin
,
K. H.
,
McCann
,
M. T.
,
Froustey
,
E.
, and
Unser
,
M.
,
2017
, “
Deep Convolutional Neural Network for Inverse Problems in Imaging
,”
IEEE Trans. Image Process.
,
26
(
9
), pp.
4509
4522
.
33.
Singh
,
A.
,
Halgamuge
,
M. N.
, and
Lakshmiganthan
,
R.
,
2017
, Impact of Different Data Types on Classifier Performance of Random Forest, Naive Bayes, and k-Nearest Neighbors Algorithms.
34.
Murphy
,
K. P.
,
2012
,
Machine Learning: A Probabilistic Perspective
,
MIT Press
.
35.
Bishop
,
C. M.
,
2006
,
Pattern Recognition and Machine Learning
, Vol.
4
,
Springer
.
36.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.
37.
Mao
,
S.
,
Cheng
,
L.
,
Zhao
,
C.
,
Khan
,
F. N.
,
Li
,
Q.
, and
Fu
,
H.
,
2021
, “
Inverse Design for Silicon Photonics: From Iterative Optimization Algorithms to Deep Neural Networks
,”
Appl. Sci.
,
11
(
9
), p.
3822
.
38.
Zeiler
,
M. D.
,
Krishnan
,
D.
,
Taylor
,
G. W.
, and
Fergus
,
R.
,
2010
, “
Deconvolutional Networks
,”
2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
,
San Francisco, CA
,
June 13
, IEEE, pp.
2528
2535
.
39.
Mohan
,
R.
,
2014
, Deep Deconvolutional Networks for Scene Parsing. arXiv preprint arXiv:1411.4101.
40.
Fakhry
,
A.
,
Zeng
,
T.
, and
Ji
,
S.
,
2016
, “
Residual Deconvolutional Networks for Brain Electron Microscopy Image Segmentation
,”
IEEE Trans. Med. Imag.
,
36
(
2
), pp.
447
456
.
41.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscipl. Optim.
,
48
(
6
), pp.
1031
1055
.
42.
Dilgen
,
S. B.
,
Dilgen
,
C. B.
,
Fuhrman
,
D. R.
,
Sigmund
,
O.
, and
Lazarov
,
B. S.
,
2018
, “
Density Based Topology Optimization of Turbulent Flow Heat Transfer Systems
,”
Struct. Multidiscipl. Optim.
,
57
(
5
), pp.
1905
1918
.
43.
Wächter
,
A.
, and
Biegler
,
L. T.
,
2006
, “
On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming
,”
Math. Program.
,
106
(
1
), pp.
25
57
.
44.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in Matlab
,”
Struct. Multidiscipl. Optim.
,
21
(
2
), pp.
120
127
.
45.
Mitusch
,
S. K.
,
Funke
,
S. W.
, and
Dokken
,
J. S.
,
2019
, “
Dolfin-Adjoint 2018.1: Automated Adjoints for Fenics and Firedrake
,”
J. Open Sourc. Softw.
,
4
(
38
), p.
1292
.
46.
Funke
,
S. W.
, and
Farrell
,
P. E.
,
2013
, A Framework for Automated PDE-Constrained Optimisation. arXiv preprint arXiv:1302.3894.
47.
Buitinck
,
L.
,
Louppe
,
G.
,
Blondel
,
M.
,
Pedregosa
,
F.
,
Mueller
,
A.
,
Grisel
,
O.
, and
Niculae
,
V.
,
2013
, “
API Design for Machine Learning Software: Experiences From the Scikit-Learn Project
,”
European Conference on Machine Learning and Principles and Practices of Knowledge Discovery in Databases
,
Prague, Czech Republic
,
Septemeber
, pp.
108
122
.
48.
Abadi
,
M.
,
Agarwal
,
A.
,
Barham
,
P.
,
Brevdo
,
E.
,
Chen
,
Z.
,
Citro
,
C.
,
Corrado
,
G. S.
, et al.,
2015
, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software Available From tensorflow.org.
49.
Head
,
T.
,
Kumar
,
M.
,
Nahrstaedt
,
H.
,
Louppe
,
G.
, and
Shcherbatyi
,
I.
,
2020
, Scikit-Optimize/Scikit-Optimize.
You do not currently have access to this content.