Abstract

The continuous contact-based skating technique utilizes the sideway movement of the two skates while changing the orientation of the two skates simultaneously. The skates remain in contact with the surface. A mathematical model mimicking a continuous skating technique is developed to analyze the kinematic behavior of the platform. Kinematic and dynamic equations of motion are derived for the nonholonomic constraints. Heuristic-based motion primitives are defined to steer the robotic platform. For the lateral movement of the platform, a creeping-based motion primitive is proposed. A prototype of the robotic platform is developed with three actuated degrees-of-freedom—orientation of two skates and distance between them. A multibody model of the platform is also developed in matlab. Analytical expressions are verified using simulation and experiments. The robotic platform follows the desired motion profiles. The motion profiles include straight-line motion, motion in a circular curve, and lateral creep-like motion of the platform. However, the initial deviation has been observed in both the simulations and experiments due to the slipping of the roller skate at the contact point with the surface. The platform can be effectively used in a structured environment.

References

1.
Velázquez
,
R.
, and
Lay-Ekuakille
,
A.
,
2011
, “
A Review of Models and Structures for Wheeled Mobile Robots: Four Case Studies
,”
2011 15th International Conference on Advanced Robotics (ICAR)
,
Tallinn, Estonia
,
June 20–23
,
IEEE
, pp.
524
529
.
2.
Jones
,
J. L.
,
Seiger
,
B. A.
, and
Flynn
,
A. M.
,
1998
,
Mobile Robots: Inspiration to Implementation
,
AK Peters/CRC Press
,
Natick, MA
.
3.
Peng
,
H.
,
Wang
,
J.
,
Wang
,
S.
,
Shen
,
W.
,
Shi
,
D.
, and
Liu
,
D.
,
2020
, “
Coordinated Motion Control for a Wheel-Leg Robot With Speed Consensus Strategy
,”
IEEE/ASME Trans. Mech.
,
25
(
3
), pp.
1366
1376
.
4.
Mombaur
,
K.
,
Truong
,
A.
, and
Laumond
,
J.-P.
,
2010
, “
From Human to Humanoid Locomotion–an Inverse Optimal Control Approach
,”
Auto. Rob.
,
28
(
3
), pp.
369
383
.
5.
Alexander
,
R. M.
,
1984
, “
The Gaits of Bipedal and Quadrupedal Animals
,”
Int. J. Rob. Res.
,
3
(
2
), pp.
49
59
.
6.
Liu
,
C.
,
Wang
,
D.
,
Goodman
,
E. D.
, and
Chen
,
Q.
,
2016
, “
Adaptive Walking Control of Biped Robots Using Online Trajectory Generation Method Based on Neural Oscillators
,”
J. Bionic Eng.
,
13
(
4
), pp.
572
584
.
7.
Nishiwaki
,
K.
, and
Kagami
,
S.
,
2008
, “
Short Cycle Pattern Generation for Online Walking Control System of Humanoids
,”
Experimental Robotics
,
Rio de Janeiro, Brazil
,
July 6–10, 2006
,
Springer
, pp.
541
550
.
8.
Yi
,
S.-J.
,
Zhang
,
B.-T.
,
Hong
,
D.
, and
Lee
,
D. D.
,
2011
, “
Practical Bipedal Walking Control on Uneven Terrain Using Surface Learning and Push Recovery
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
San Francisco, CA
,
Sept. 25–30
,
IEEE
, pp.
3963
3968
.
9.
Yi
,
S.-J.
,
Zhang
,
B.-T.
, and
Lee
,
D. D.
,
2010
, “
Online Learning of Uneven Terrain for Humanoid Bipedal Walking
,”
AAAI
,
Atlanta, GA
,
July 11–15
, Vol.
10
, pp.
1639
1644
.
10.
Hong
,
Y.-D.
, and
Lee
,
B.
,
2019
, “
Real-Time Feasible Footstep Planning for Bipedal Robots in Three-Dimensional Environments Using Particle Swarm Optimization
,”
IEEE/ASME Trans. Mech.
,
25
(
1
), pp.
429
437
.
11.
Silva
,
M. F.
, and
Machado
,
J. T.
,
2012
, “
A Literature Review on the Optimization of Legged Robots
,”
J. Vib. Control
,
18
(
12
), pp.
1753
1767
.
12.
Li
,
Y.
,
Li
,
B.
,
Ruan
,
J.
, and
Rong
,
X.
,
2011
, “
Research of Mammal Bionic Quadruped Robots: A Review
,”
2011 IEEE 5th International Conference on Robotics
,
Qingdao, China
,
Sept. 17–19
,
Automation and Mechatronics (RAM), IEEE
, pp.
166
171
.
13.
Wang
,
J.
,
Gao
,
F.
, and
Zhang
,
Y.
,
2014
, “
Topology Configuration of Actuator Failure Mode of a Novel Quadruped Robot
,”
ASME J. Mech. Rob.
,
6
(
4
), p.
041015
.
14.
Chen
,
X.
,
Gao
,
F.
,
Qi
,
C.
,
Tian
,
X.
, and
Zhang
,
J.
,
2014
, “
Spring Parameters Design for the New Hydraulic Actuated Quadruped Robot
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021003
.
15.
Wei
,
Z.
,
Song
,
G.
,
Qiao
,
G.
,
Zhang
,
Y.
, and
Sun
,
H.
,
2017
, “
Design and Implementation of a Leg–wheel Robot: Transleg
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051001
.
16.
Kim
,
J.
,
Kim
,
H.
,
Kim
,
Y.
,
Park
,
J.
,
Seo
,
T.
,
Kim
,
H. S.
, and
Kim
,
J.
,
2019
, “
A New Lizard-Inspired Robot With S-Shaped Lateral Body Motions
,”
IEEE/ASME Trans. Mech.
,
25
(
1
), pp.
130
141
.
17.
Zhang
,
C.
,
Zhang
,
C.
,
Dai
,
J. S.
, and
Qi
,
P.
,
2019
, “
Stability Margin of a Metamorphic Quadruped Robot With a Twisting Trunk
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
064501
.
18.
Yu
,
J.
,
Wu
,
Z.
,
Su
,
Z.
,
Wang
,
T.
, and
Qi
,
S.
,
2019
, “
Motion Control Strategies for a Repetitive Leaping Robotic Dolphin
,”
IEEE/ASME Trans. Mech.
,
24
(
3
), pp.
913
923
.
19.
Racioppo
,
P.
, and
Ben-Tzvi
,
P.
,
2019
, “
Design and Control of a Cable-Driven Articulated Modular Snake Robot
,”
IEEE/ASME Trans. Mech.
,
24
(
3
), pp.
893
901
.
20.
Hopkins
,
J. K.
, and
Gupta
,
S. K.
,
2014
, “
Design and Modeling of a New Drive System and Exaggerated Rectilinear-Gait for a Snake-Inspired Robot
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021001
.
21.
Tang
,
C.
,
Li
,
P.
,
Zhou
,
G.
,
Meng
,
D.
,
Shu
,
X.
,
Guo
,
S.
, and
Li
,
Z.
,
2019
, “
Modeling and Mechanical Analysis of Snake Robots on Cylinders
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
041013
.
22.
Jung
,
G.-P.
,
Casarez
,
C. S.
,
Lee
,
J.
,
Baek
,
S.-M.
,
Yim
,
S.-J.
,
Chae
,
S.-H.
,
Fearing
,
R. S.
, and
Cho
,
K.-J.
,
2019
, “
Jumproach: A Trajectory-Adjustable Integrated Jumping-Crawling Robot
,”
IEEE/ASME Trans. Mech.
,
24
(
3
), pp.
947
958
.
23.
Guenther
,
F.
,
Vu
,
H. Q.
, and
Iida
,
F.
,
2019
, “
Improving Legged Robot Hopping by Using Coupling-Based Series Elastic Actuation
,”
IEEE/ASME Trans. Mech.
,
24
(
2
), pp.
413
423
.
24.
Hirose
,
S.
, and
Takeuchi
,
H.
,
1996
, “
Study on Roller-Walk (Basic Characteristics and Its Control)
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Minneapolis, MN
,
Apr. 22–28
, Vol.
4
,
IEEE
, pp.
3265
3270
.
25.
Endo
,
G.
, and
Hirose
,
S.
,
1999
, “
Study on Roller-Walker (System Integration and Basic Experiments)
,”
Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C)
,
Detroit, MI
,
May 10–15
, Vol.
3
,
IEEE
, pp.
2032
2037
.
26.
Byl
,
K.
,
Byl
,
M.
, and
Satzinger
,
B.
,
2014
, “
Algorithmic Optimization of Inverse Kinematics Tables for High Degree-of-Feedom Limbs
,”
ASME 2014 Dynamic Systems and Control Conference
,
San Antonio, TX
,
Oct. 22–24
, Vol.
46186
,
American Society of Mechanical Engineers Digital Collection
, Vol. 46186, p.
V001T04A005
.
27.
Satzinger
,
B. W.
,
Lau
,
C.
,
Byl
,
M.
, and
Byl
,
K.
,
2016
, “Experimental Results for Dexterous Quadruped Locomotion Planning With Robosimian,”
Experimental Robotics
,
M.
Ani Hsieh
,
O.
Khatib
, and
Vijay Kumar
, eds.,
Springer
,
New York
, pp.
33
46
.
28.
Bellegarda
,
G.
,
van Teeffelen
,
K.
, and
Byl
,
K.
,
2018
, “
Design and Evaluation of Skating Motions for a Dexterous Quadruped
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
,
May 21–25
, pp.
1703
1709
.
29.
Ziv
,
N.
,
Lee
,
Y.
, and
Ciaravella
,
G.
,
2010
, “
Inline Skating Motion Generator With Passive Wheels for Small Size Humanoid Robots
,”
2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Montréal, Canada
,
July 6–9
,
IEEE
, pp.
1391
1395
.
30.
Takasugi
,
N.
,
Kojima
,
K.
,
Nozawa
,
S.
,
Kakiuchi
,
Y.
,
Okada
,
K.
, and
Inaba
,
M.
,
2016
, “
Real-Time Skating Motion Control of Humanoid Robots for Acceleration and Balancing
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
,
IEEE
, pp.
1356
1363
.
31.
Dwaracherla
,
V.
,
Thakar
,
S.
,
Vachhani
,
L.
,
Gupta
,
A.
,
Yadav
,
A.
, and
Modi
,
S.
,
2019
, “
Motion Planning for Point-to-Point Navigation of Spherical Robot Using Position Feedback
,”
IEEE/ASME Trans. Mech.
,
24
(
5
), pp.
2416
2426
.
32.
Wada
,
M.
, and
Mori
,
S.
,
1996
, “
Holonomic and Omnidirectional Vehicle With Conventional Tires
,”
IEEE International Conference on Robotics and Automation Proceedings
,
Minneapolis, MN
,
Apr. 22–28
, Vol.
4
, pp.
3671
3676
.
33.
Rojas
,
R.
, and
Förster
,
A. G.
,
2006
, “
Holonomic Control of a Robot With an Omnidirectional Drive
,”
KI-Künstliche Intel.
,
20
(
2
), pp.
12
17
.
34.
Miller
,
S.
,
2017
, “
Simscape Multibody Contact Forces Library
,” https://github.com/mathworks/Simscape-Multibody-Contact-Forces-Library, Accessed January 14, 2020.
35.
Sensortec
,
B.
,
2016
, “
Bno055 Intelligent 9-Axis Absolute Orientation Sensor
,”
Bosch Sensortec
,
Baden-Württemberg, Germany
, pp.
1
106
.
36.
Vanaubel
,
Y.
,
Pansiot
,
J.-J.
,
Mérindol
,
P.
, and
Donnet
,
B.
,
2013
, “
Network Fingerprinting: Ttl-Based Router Signatures
,”
Proceedings of the 2013 Conference on Internet Measurement Conference
,
Barcelona, Spain
,
Oct. 23–25
, pp.
369
376
.
37.
Russell
,
M.
, and
Fischaber
,
S.
,
2013
, “
Opencv Based Road Sign Recognition on Zynq
,”
2013 11th IEEE International Conference on Industrial Informatics (INDIN)
,
Bochum, Germany
,
July 29–31
,
IEEE
, pp.
596
601
.
38.
Luca
,
L.
, and
Popescu
,
I.
,
2012
, “
Generation of Aesthetic Surfaces Through Trammel Mechanism
,”
Fiabilitate si durabilitate (Fiability Durability)
,
1
, pp.
55
61
.
39.
Mallik
,
A. K.
,
Ghosh
,
A.
, and
Dittrich
,
G.
,
1994
,
Kinematic Analysis and Synthesis of Mechanisms
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.