Abstract

Series elastic actuators (SEAs) are increasingly popular in wearable robotics due to their high fidelity closed-loop torque control capability. Therefore, it has become increasingly important to characterize its performance when used in dynamic environments. However, the conventional design approach does not fully capture the complexity of the entire exoskeleton system. These limitations stem from identifying design criteria with inadequate biomechanics data, utilizing an off-the-shelf user interface, and applying a benchtop-based proportional-integral-derivative control for actual low-level torque tracking. While this approach shows decent actuator performance, it does not consider human factors such as the dynamic back-driving nature of human-exoskeleton systems as well as soft human tissue dampening during the load transfer. Using holistic design guidelines to improve the SEA-based exoskeleton performance during dynamic locomotion, our final system has an overall mass of 4.8 kg (SEA mass of 1.1 kg) and can provide a peak joint torque of 108 Nm with a maximum velocity of 5.2 rad/s. Additionally, we present a user state-based feedforward controller to further improve the low-level torque tracking for diverse walking conditions. Our study results provide future exoskeleton designers with a foundation to further improve SEA-based exoskeleton’s torque tracking response for maximizing human-exoskeleton performance during dynamic locomotion.

References

1.
Young
,
A. J.
, and
Ferris
,
D. P.
,
2017
, “
State of the Art and Future Directions for Lower Limb Robotic Exoskeletons
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
2
), pp.
171
182
.
2.
Sawicki
,
G. S.
,
Beck
,
O. N.
,
Kang
,
I.
, and
Young
,
A. J.
,
2020
, “
The Exoskeleton Expansion: Improving Walking and Running Economy
,”
J. NeuroEng. Rehabil.
,
17
(
1
), pp.
1
9
.
3.
Kim
,
J.
,
Lee
,
G.
,
Heimgartner
,
R.
,
Revi
,
D. A.
,
Karavas
,
N.
,
Nathanson
,
D.
,
Galiana
,
I.
, et al.,
2019
, “
Reducing the Metabolic Rate of Walking and Running With a Versatile, Portable Exosuit
,”
Science
,
365
(
6454
), pp.
668
672
.
4.
Zhang
,
J.
,
Fiers
,
P.
,
Witte
,
K. A.
,
Jackson
,
R. W.
,
Poggensee
,
K. L.
,
Atkeson
,
C. G.
, and
Collins
,
S. H.
,
2017
, “
Human-in-the-Loop Optimization of Exoskeleton Assistance During Walking
,”
Science
,
356
(
6344
), pp.
1280
1284
.
5.
Fontana
,
M.
,
Vertechy
,
R.
,
Marcheschi
,
S.
,
Salsedo
,
F.
, and
Bergamasco
,
M.
,
2014
, “
The Body Extender: A Full-Body Exoskeleton for the Transport and Handling of Heavy Loads
,”
IEEE Robot. Autom. Mag.
,
21
(
4
), pp.
34
44
.
6.
Yu
,
H.
,
Choi
,
I. S.
,
Han
,
K.-L.
,
Choi
,
J. Y.
,
Chung
,
G.
, and
Suh
,
J.
,
2018
, “
Development of a Upper-Limb Exoskeleton Robot for Refractory Construction
,”
Control Eng. Pract.
,
72
, pp.
104
113
.
7.
Seo
,
K.
,
Lee
,
J.
,
Lee
,
Y.
,
Ha
,
T.
, and
Shim
,
Y.
,
2016
, “
Fully Autonomous Hip Exoskeleton Saves Metabolic Cost of Walking
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
,
IEEE
, pp.
4628
4635
.
8.
Lee
,
D.
,
Mclain
,
B. J.
,
Kang
,
I.
, and
Young
,
A.
,
2021
, “
Biomechanical Comparison of Assistance Strategies Using a Bilateral Robotic Knee Exoskeleton
,”
IEEE Trans. Biomed. Eng.
,
68
(
9
), pp.
2870
2879
.
9.
Jang
,
J.
,
Kim
,
K.
,
Lee
,
J.
,
Lim
,
B.
, and
Shim
,
Y.
,
2016
, “
Assistance Strategy for Stair Ascent With a Robotic Hip Exoskeleton
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
,
IEEE
, pp.
5658
5663
.
10.
Awad
,
L. N.
,
Bae
,
J.
,
O’donnell
,
K.
,
De Rossi
,
S. M.
,
Hendron
,
K.
,
Sloot
,
L. H.
,
Kudzia
,
P.
, et al.
2017
, “
A Soft Robotic Exosuit Improves Walking in Patients After Stroke
,”
Sci. Transl. Med.
,
9
(
400
).
11.
Quintero
,
H. A.
,
Farris
,
R. J.
, and
Goldfarb
,
M.
,
2012
, “
A Method for the Autonomous Control of Lower Limb Exoskeletons for Persons With Paraplegia
,”
J. Med. Dev.
,
6
(
4
).
12.
Bae
,
J.
,
Siviy
,
C.
,
Rouleau
,
M.
,
Menard
,
N.
,
O’Donnell
,
K.
,
Geliana
,
I.
,
Athanassiu
,
M.
, et al.,
2018
, “
A Lightweight and Efficient Portable Soft Exosuit for Paretic Ankle Assistance in Walking After Stroke
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
,
May 21–25
,
IEEE
, pp.
2820
2827
.
13.
Heo
,
U.
,
Kim
,
S. J.
, and
Kim
,
J.
,
2020
, “
Backdrivable and Fully-Portable Pneumatic Back Support Exoskeleton for Lifting Assistance
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
2047
2053
.
14.
Zoss
,
A. B.
,
Kazerooni
,
H.
, and
Chu
,
A.
,
2006
, “
Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (Bleex)
,”
IEEE/ASME Trans. Mechatron.
,
11
(
2
), pp.
128
138
.
15.
Browning
,
R. C.
,
Modica
,
J. R.
,
Kram
,
R.
, and
Goswami
,
A.
,
2007
, “
The Effects of Adding Mass to the Legs on the Energetics and Biomechanics of Walking
,”
Med. Sci. Sports Exercise
,
39
(
3
), pp.
515
525
.
16.
Pratt
,
G. A.
, and
Williamson
,
M. M.
,
1995
, “
Series Elastic Actuators
,”
Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vol. 1 Human Robot Interaction and Cooperative Robots
,
Pittsburgh, PA
,
Aug. 5–9
,
IEEE
, pp.
399
406
.
17.
Pratt
,
J.
,
Krupp
,
B.
, and
Morse
,
C.
,
2002
, “
Series Elastic Actuators for High Fidelity Force Control
,”
Ind. Robot Int. J.
,
29
(
3
), pp.
234
241
.
18.
Kong
,
K.
,
Bae
,
J.
, and
Tomizuka
,
M.
,
2009
, “
Control of Rotary Series Elastic Actuator for Ideal Force-Mode Actuation in Human–Robot Interaction Applications
,”
IEEE/ASME Trans. Mechatron.
,
14
(
1
), pp.
105
118
.
19.
Kong
,
K.
,
Bae
,
J.
, and
Tomizuka
,
M.
,
2011
, “
A Compact Rotary Series Elastic Actuator for Human Assistive Systems
,”
IEEE/ASME Trans. Mechatron.
,
17
(
2
), pp.
288
297
.
20.
Giovacchini
,
F.
,
Vannetti
,
F.
,
Fantozzi
,
M.
,
Cempini
,
M.
,
Cortese
,
M.
,
Parri
,
A.
,
Yan
,
T.
,
Lefeber
,
D.
, and
Vitiello
,
N.
,
2015
, “
A Light-Weight Active Orthosis for Hip Movement Assistance
,”
Rob. Auton. Syst.
,
73
, pp.
123
134
.
21.
Veneman
,
J. F.
,
Ekkelenkamp
,
R.
,
Kruidhof
,
R.
,
van der Helm
,
F. C.
, and
van der Kooij
,
H.
,
2006
, “
A Series Elastic- and Bowden-Cable-Based Actuation System for Use as Torque Actuator in Exoskeleton-Type Robots
,”
Int. J. Robot. Res.
,
25
(
3
), pp.
261
281
.
22.
Kim
,
S.
, and
Bae
,
J.
,
2017
, “
Force-Mode Control of Rotary Series Elastic Actuators in a Lower Extremity Exoskeleton Using Model-Inverse Time Delay Control
,”
IEEE/ASME Trans. Mechatron.
,
22
(
3
), pp.
1392
1400
.
23.
Shepherd
,
M. K.
, and
Rouse
,
E. J.
,
2017
, “
Design and Validation of a Torque-Controllable Knee Exoskeleton for Sit-to-Stand Assistance
,”
IEEE/ASME Trans. Mechatron.
,
22
(
4
), pp.
1695
1704
.
24.
Yandell
,
M. B.
,
Quinlivan
,
B. T.
,
Popov
,
D.
,
Walsh
,
C.
, and
Zelik
,
K. E.
,
2017
, “
Physical Interface Dynamics Alter How Robotic Exosuits Augment Human Movement: Implications for Optimizing Wearable Assistive Devices
,”
J. Neuroeng. Rehabil.
,
14
(
1
), pp.
1
11
.
25.
Yandell
,
M. B.
,
Ziemnicki
,
D. M.
,
McDonald
,
K. A.
, and
Zelik
,
K. E.
,
2020
, “
Characterizing the Comfort Limits of Forces Applied to the Shoulders, Thigh and Shank to Inform Exosuit Design
,”
PLoS One
,
15
(
2
), p.
e0228536
.
26.
Lee
,
S. E.
,
Kilpatrick
,
C.
,
Kang
,
I.
,
Hsu
,
H.
,
Childers
,
W. L.
, and
Young
,
A.
,
2020
, “
Investigating the Impact of the User Interface for a Powered Hip Orthosis on Metabolic Cost and User Comfort: A Preliminary Study
,”
J. Prosthet. Orthot.
,
33
(
2
), pp.
133
140
.
27.
Yan
,
T.
,
Cempini
,
M.
,
Oddo
,
C. M.
, and
Vitiello
,
N.
,
2015
, “
Review of Assistive Strategies in Powered Lower-Limb Orthoses and Exoskeletons
,”
Rob. Auton. Syst.
,
64
, pp.
120
136
.
28.
Zhang
,
J.
,
Cheah
,
C. C.
, and
Collins
,
S. H.
,
2017
, “Torque Control in Legged Locomotion,”
Bioinspired Legged Locomotion
,
M.
Sharbafi
and
A.
Seyfarth
, eds.,
Elsevier
, pp.
347
400
.
29.
Bovi
,
G.
,
Rabuffetti
,
M.
,
Mazzoleni
,
P.
, and
Ferrarin
,
M.
,
2011
, “
A Multiple-Task Gait Analysis Approach: Kinematic, Kinetic and EMG Reference Data for Healthy Young and Adult Subjects
,”
Gait Posture
,
33
(
1
), pp.
6
13
.
30.
Winter
,
D. A.
,
1984
, “
Kinematic and Kinetic Patterns in Human Gait: Variability and Compensating Effects
,”
Hum. Mov. Sci.
,
3
(
1–2
), pp.
51
76
.
31.
Camargo
,
J.
,
Ramanathan
,
A.
,
Flanagan
,
W.
, and
Young
,
A.
,
2021
, “
A Comprehensive, Open-Source Dataset of Lower Limb Biomechanics in Multiple Conditions of Stairs, Ramps, and Level-Ground Ambulation and Transitions
,”
J. Biomech.
,
199
, p.
110320
.
32.
Fryar
,
C. D.
,
Carroll
,
M. D.
,
Gu
,
Q.
,
Afful
,
J.
, and
Ogden
,
C. L.
,
2021
, “
Anthropometric Reference Data for Children and Adults: United States, 2015–2018
,” Vital and Health Statistics. Series 3, Analytical and Epidemiological Studies, No. 46, https://stacks.cdc.gov/view/cdc/100478
33.
Irmscher
,
C.
,
Woschke
,
E.
,
May
,
E.
, and
Daniel
,
C.
,
2018
, “
Design, Optimisation and Testing of a Compact, Inexpensive Elastic Element for Series Elastic Actuators
,”
Med. Eng. Phys.
,
52
, pp.
84
89
.
34.
Paine
,
N.
,
Mehling
,
J. S.
,
Holley
,
J.
,
Radford
,
N. A.
,
Johnson
,
G.
,
Fok
,
C.-L.
, and
Sentis
,
L.
,
2015
, “
Actuator Control for the NASA-JSC Valkyrie Humanoid Robot: A Decoupled Dynamics Approach for Torque Control of Series Elastic Robots
,”
J. Field Robot.
,
32
(
3
), pp.
378
396
.
35.
Zhang
,
T.
,
Tran
,
M.
, and
Huang
,
H.
,
2018
, “
Design and Experimental Verification of Hip Exoskeleton With Balance Capacities for Walking Assistance
,”
IEEE/ASME Trans. Mechatron.
,
23
(
1
), pp.
274
285
.
36.
Kang
,
I.
,
Kunapuli
,
P.
,
Hsu
,
H.
, and
Young
,
A. J.
,
2019
, “
Electromyography (EMG) Signal Contributions in Speed and Slope Estimation Using Robotic Exoskeletons
,”
2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)
,
Toronto, Canada
,
June 24–28
,
IEEE
, pp.
548
553
.
37.
Kang
,
I.
,
Hsu
,
H.
, and
Young
,
A.
,
2019
, “
The Effect of Hip Assistance Levels on Human Energetic Cost Using Robotic Hip Exoskeletons
,”
IEEE Robot. Autom. Lett.
,
4
(
2
), pp.
430
437
.
38.
Kang
,
I.
,
Molinaro
,
D. D.
,
Duggal
,
S.
,
Chen
,
Y.
,
Kunapuli
,
P.
, and
Young
,
A. J.
,
2021
, “
Real-Time Gait Phase Estimation for Robotic Hip Exoskeleton Control During Multimodal Locomotion
,”
IEEE Robot. Autom. Lett.
,
6
(
2
), pp.
3491
3497
.
39.
Lee
,
J.
,
Seo
,
K.
,
Lim
,
B.
,
Jang
,
J.
,
Kim
,
K.
, and
Choi
,
H.
,
2017
, “
Effects of Assistance Timing on Metabolic Cost, Assistance Power, and Gait Parameters for a Hip-Type Exoskeleton
,”
2017 International Conference on Rehabilitation Robotics (ICORR)
,
London, UK
,
July 17–20
,
IEEE
, pp.
498
504
.
40.
Ding
,
Y.
,
Panizzolo
,
F. A.
,
Siviy
,
C.
,
Malcolm
,
P.
,
Galiana
,
I.
,
Holt
,
K. G.
, and
Walsh
,
C. J.
,
2016
, “
Effect of Timing of Hip Extension Assistance During Loaded Walking With a Soft Exosuit
,”
J. Neuroeng. Rehabil.
,
13
(
1
), p.
87
.
41.
Lim
,
B.
,
Lee
,
J.
,
Jang
,
J.
,
Kim
,
K.
,
Park
,
Y. J.
,
Seo
,
K.
, and
Shim
,
Y.
,
2019
, “
Delayed Output Feedback Control for Gait Assistance With a Robotic Hip Exoskeleton
,”
IEEE Trans. Robot.
,
35
(
4
), pp.
1055
1062
.
42.
Tanaka
,
N.
,
Matsushita
,
S.
,
Sonoda
,
Y.
,
Maruta
,
Y.
,
Fujitaka
,
Y.
,
Sato
,
M.
,
Simomori
,
M.
, et al.,
2019
, “
Effect of Stride Management Assist Gait Training for Poststroke Hemiplegia: A Single Center, Open-Label, Randomized Controlled Trial
,”
J. Stroke Cerebrovasc. Dis.
,
28
(
2
), pp.
477
486
.
You do not currently have access to this content.