Abstract

Animal legs are capable of a tremendous breadth of distinct dynamic behaviors. As robots pursue this same degree of flexibility in their behavioral repertoire, the design of the power transition mechanism from joint to operational space (the leg) becomes increasingly significant given the limitations current actuator technology. To address the challenges of designing legs capable of meeting the competing requirements of various dynamic behaviors, this paper proposes a technique which prioritizes explicitly encoding a set of dynamics into a robot’s leg design, called dyno-kinematic leg design (DKLD). This paper also augments the design technique with a method of evaluating the suitability of an individual leg’s workspace to perform dynamic behaviors, called the effective dynamic workspace (EDW). These concepts are shown to effectively determine optimal leg designs within a set of three, increasingly complex, case studies on different robots. These new legs designs enable a 5 kg robot to climb vertical surfaces at 3 Hz, allow a 60 kg robot to efficiently perform a range of behaviors useful for navigation (including a run at 2 m/s), and endow a small quadrupedal robot with all of the necessary behaviors to produce running and climbing multimodality. This design methodology proves robust enough to determine advantageous legs for a diverse range of dynamic requirements, leg morphologies, and cost functions, therefore demonstrating its possible application to many legged robotic platforms.

References

1.
Boxshall
,
G. A.
,
2004
, “
The Evolution of Arthropod Limbs
,”
Biol. Rev.
,
79
(
2
), pp.
253
300
.
2.
Inuzuka
,
N.
,
1996
, “
Preliminary Study on Kinematic Gait Analysis in Mammals
,”
Mammal Study
,
21
(
1
), pp.
43
57
.
3.
Alexander
,
R. M.
, and
Vernon
,
A.
,
1975
, “
The Mechanics of Hopping by Kangaroos (Macropodidae)
,”
J. Zool.
,
177
(
2
), pp.
265
303
.
4.
Peters
,
S. E.
,
Kamel
,
L. T.
, and
Bashor
,
D. P.
,
1996
, “
Hopping and Swimming in the Leopard Frog, Rana Pipiens: I. Step Cycles and Kinematics
,”
J. Morphol.
,
230
(
1
), pp.
1
16
.
5.
Billard
,
A.
, and
Ijspeert
,
A. J.
,
2000
, “
Biologically Inspired Neural Controllers for Motor Control in a Quadruped Robot
,”
Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, 2000, IJCNN 2000
,
Como, Italy
,
July 27
, vol. 6, IEEE, pp.
637
641
.
6.
Kingsley
,
D. A.
,
Quinn
,
R. D.
, and
Ritzmann
,
R. E.
,
2006
, “
A Cockroach Inspired Robot With Artificial Muscles
,”
2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Beijing, China
,
Oct. 9–15
, IEEE, pp.
1837
1842
.
7.
Kim
,
S.
,
Spenko
,
M.
,
Trujillo
,
S.
,
Heyneman
,
B.
,
Santos
,
D.
, and
Cutkosky
,
M. R.
,
2008
, “
Smooth Vertical Surface Climbing With Directional Adhesion
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
65
74
.
8.
Lohmeier
,
S.
,
Buschmann
,
T.
,
Schwienbacher
,
M.
,
Ulbrich
,
H.
, and
Pfeiffer
,
F.
,
2006
, “
Leg Design for a Humanoid Walking Robot
,”
2006 Sixth IEEE-RAS International Conference on Humanoid Robots
,
Genova, Italy
,
Dec. 4–6
, IEEE, pp.
536
541
.
9.
Lapeyre
,
M.
,
Rouanet
,
P.
, and
Oudeyer
,
P.-Y.
,
2013
, “
The Poppy Humanoid Robot: Leg Design for Biped Locomotion
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
, IEEE, pp.
349
356
.
10.
Delcomyn
,
F.
, and
Nelson
,
M. E.
,
2000
, “
Architectures for a Biomimetic Hexapod Robot
,”
Rob. Auton. Syst.
,
30
(
1–2
), pp.
5
15
.
11.
Hodoshima
,
R.
,
Ohura
,
Y.
,
Nishiyama
,
Y.
,
Sakaki
,
A.
,
Watanabe
,
S.
, and
Kotosaka
,
S.
,
2016
, “
The Asura I Harvestman-Like Hexapod Walking Robot: Compact Body and Long Leg Design
,”
Adv. Rob.
,
30
(
23
), pp.
1467
1483
.
12.
Jianhua
,
G.
,
2006
, “
Design and Kinematic Simulation for Six-Dof Leg Mechanism of Hexapod Robot
,”
2006 IEEE International Conference on Robotics and Biomimetics
,
Kunming, China
,
Dec. 17–20
, IEEE, pp.
625
629
.
13.
Ishii
,
H.
,
Masuda
,
Y.
,
Miyagishima
,
S.
,
Fumino
,
S.
,
Takanishi
,
A.
,
Laschi
,
C.
,
Mazzolai
,
B.
,
Mattoli
,
V.
, and
Dario
,
P.
,
2009
, “
Design and Development of Biomimetic Quadruped Robot for Behavior Studies of Rats and Mice
,”
2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Minneapolis, MN
,
Sept. 3–6
, IEEE, pp.
7192
7195
.
14.
Rutishauser
,
S.
,
Sprowitz
,
A.
,
Righetti
,
L.
, and
Ijspeert
,
A. J.
,
2008
, “
Passive Compliant Quadruped Robot Using Central Pattern Generators for Locomotion Control
,”
2008 Second IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
,
Scottsdale, AZ
,
Oct. 19–22
, IEEE, pp.
710
715
.
15.
Hutter
,
M.
,
Gehring
,
C.
,
Jud
,
D.
,
Lauber
,
A.
,
Bellicoso
,
C. D.
,
Tsounis
,
V.
,
Hwangbo
,
J.
,
Bodie
,
K.
,
Fankhauser
,
P.
,
Bloesch
,
M.
, and
Diethelm
,
R.
,
2016
, “
Anymal—A Highly Mobile and Dynamic Quadrupedal Robot
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, IEEE, pp.
38
44
.
16.
Haldane
,
D. W.
,
Yim
,
J. K.
, and
Fearing
,
R. S.
,
2017
, “
Repetitive Extreme-Acceleration (14-g) Spatial Jumping With Salto-1P
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
, IEEE, pp.
3345
3351
.
17.
Sreenath
,
K.
,
Park
,
H.-W.
,
Poulakakis
,
I.
, and
Grizzle
,
J. W.
,
2011
, “
A Compliant Hybrid Zero Dynamics Controller for Stable, Efficient and Fast Bipedal Walking on MABEL
,”
Int. J. Rob. Res.
,
30
(
9
), pp.
1170
1193
.
18.
Semini
,
C.
,
Tsagarakis
,
N. G.
,
Vanderborght
,
B.
,
Yang
,
Y.
, and
Caldwell
,
D. G.
,
2008
, “
HyQ-Hydraulically Actuated Quadruped Robot: Hopping Leg Prototype
,”
2008 Second IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
,
Scottsdale, AZ
,
Oct. 19–22
, IEEE, pp.
593
599
.
19.
Kenneally
,
G.
,
De
,
A.
, and
Koditschek
,
D. E.
,
2016
, “
Design Principles for a Family of Direct-Drive Legged Robots
,”
IEEE Rob. Autom. Lett.
,
1
(
2
), pp.
900
907
.
20.
Wensing
,
P. M.
,
Wang
,
A.
,
Seok
,
S.
,
Otten
,
D.
,
Lang
,
J.
, and
Kim
,
S.
,
2017
, “
Proprioceptive Actuator Design in the MIT Cheetah: Impact Mitigation and High-Bandwidth Physical Interaction for Dynamic Legged Robots
,”
IEEE Trans. Rob.
,
33
(
3
), pp.
509
522
.
21.
Galloway
,
K. C.
,
Clark
,
J. E.
, and
Koditschek
,
D. E.
,
2013
, “
Variable Stiffness Legs for Robust, Efficient, and Stable Dynamic Running
,”
ASME J. Mech. Rob.
,
5
(
1
), p.
011009
.
22.
Spenko
,
M.
,
Haynes
,
G. C.
,
Saunders
,
J.
,
Cutkosky
,
M. R.
,
Rizzi
,
A. A.
,
Full
,
R. J.
, and
Koditschek
,
D. E.
,
2008
, “
Biologically Inspired Climbing With a Hexapedal Robot
,”
J. Field Rob.
,
25
(
4–5
), pp.
223
242
.
23.
Hoover
,
A. M.
,
Burden
,
S.
,
Fu
,
X. -Y.
,
Sastry
,
S. S.
, and
Fearing
,
R. S.
,
2010
, “
Bio-Inspired Design and Dynamic Maneuverability of a Minimally Actuated Six-Legged Robot
,”
2010 Third IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
,
Tokyo, Japan
,
Sept. 26–29
, IEEE, pp.
869
876
.
24.
Austin
,
M. P.
,
Brown
,
J. M.
,
Young
,
C. A.
, and
Clark
,
J. E.
,
2018
, “
Leg Design to Enable Dynamic Running and Climbing on Bobcat
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, IEEE.
25.
Cavagna
,
G. A.
,
Heglund
,
N. C.
, and
Taylor
,
C. R.
,
1977
, “
Mechanical Work in Terrestrial Locomotion: Two Basic Mechanisms for Minimizing Energy Expenditure
,”
Am. J. Physiol.-Regul. Integr. Comp. Physiol.
,
233
(
5
), pp.
R243
R261
.
26.
Blickhan
,
R.
,
1989
, “
The Spring–Mass Model for Running and Hopping
,”
J. Biomech.
,
22
(
11–12
), pp.
1217
1227
.
27.
Goldman
,
D. I.
,
Chen
,
T. S.
,
Dudek
,
D. M.
, and
Full
,
R. J.
,
2006
, “
Dynamics of Rapid Vertical Climbing in Cockroaches Reveals a Template
,”
J. Exp. Biol.
,
209
(
15
), pp.
2990
3000
.
28.
Brown
,
J. M.
,
Austin
,
M. P.
,
Miller
,
B. D.
, and
Clark
,
J. E.
,
2019
, “
Evidence for Multiple Dynamic Climbing Gait Families
,”
Bioinspir. Biomim.
,
14
(
3
), p.
036001
.
29.
Altendorfer
,
R.
,
Koditschek
,
D. E.
, and
Holmes
,
P.
,
2004
, “
Stability Analysis of a Clock-Driven Rigid-Body Slip Model for RHex
,”
Int. J. Rob. Res.
,
23
(
10–11
), pp.
1001
1012
.
30.
Abate
,
A.
,
Hurst
,
J. W.
, and
Hatton
,
R. L.
,
2016
, “
Mechanical Antagonism in Legged Robots
,”
Robotics: Science and Systems
,
Cambridge, MA
,
July 12–14
.
31.
Eberhart
,
R.
, and
Kennedy
,
J.
,
1995
, “
A New Optimizer Using Particle Swarm Theory
,”
MHS’95, Proceedings of the Sixth International Symposium on Micro Machine and Human Science
,
IEEE
, pp.
39
43
.
32.
Trelea
,
I. C.
,
2003
, “
The Particle Swarm Optimization Algorithm: Convergence Analysis and Parameter Selection
,”
Inf. Process. Lett.
,
85
(
6
), pp.
317
325
.
33.
Brown
,
J.
,
Carbiener
,
C.
,
Nicholson
,
J.
,
Hemenway
,
N.
,
Pusey
,
J.
, and
Clark
,
J.
,
2018
, “
Fore-Aft Leg Specialization Controller for a Dynamic Quadruped
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, QLD, Australia
,
May 21–25
.
34.
Blackman
,
D. J.
,
Nicholson
,
J. V.
,
Pusey
,
J. L.
,
Austin
,
M. P.
,
Young
,
C.
,
Brown
,
J. M.
, and
Clark
,
J. E.
,
2017
, “
Leg Design for Running and Jumping Dynamics
,”
2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
IEEE
, pp.
2617
2623
.
35.
Lynch
,
G. A.
,
Clark
,
J. E.
,
Lin
,
P. -C.
, and
Koditschek
,
D. E.
,
2012
, “
A Bioinspired Dynamical Vertical Climbing Robot
,”
Int. J. Rob. Res.
,
31
(
8
), pp.
974
996
.
36.
Dickson
,
J.
, and
Clark
,
J.
,
2012
, “
The Effect of Sprawl Angle and Wall Inclination on a Bipedal, Dynamic Climbing Platform
,”
International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR)
,
Baltimore, MD
,
July 23–26
, pp.
459
466
.
37.
Miller
,
B. D.
, and
Clark
,
J. E.
,
2015
, “
Towards Highly-Tuned Mobility in Multiple Domains With a Dynamical Legged Platform
,”
Bioinspir. Biomim.
,
10
(
4
), p.
046001
.
38.
39.
Kenneally
,
G.
, and
Koditschek
,
D. E.
,
2015
, “
Leg Design for Energy Management in an Electromechanical Robot
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, IEEE, pp.
5712
5718
.
40.
Blackman
,
D. J.
,
Nicholson
,
J. V.
,
Ordonez
,
C.
,
Miller
,
B. D.
, and
Clark
,
J. E.
,
2016
, “
Gait Development on Minitaur, A Direct Drive Quadrupedal Robot
,”
SPIE Defense+ Security
,
Baltimore, MD
,
Apr. 17–21
.
41.
Austin
,
M.
,
Brown
,
J. M.
,
Geidel
,
K.
,
Wang
,
W.
, and
Clark
,
J. E.
,
2017
, “
Gait Design and Optimization for Efficient Running of a Direct-Drive Quadrupedal Robot
,”
SPIE Defense+ Security
,
Anaheim, CA
,
Apr. 9–13
.
42.
Hyun
,
D. J.
,
Lee
,
J.
,
Park
,
S.
, and
Kim
,
S.
,
2016
, “
Implementation of Trot-to-Gallop Transition and Subsequent Gallop on the MIT Cheetah I
,”
Int. J. Rob. Res.
,
35
(
13
), pp.
1627
1650
.
43.
Miller
,
B.
,
Andrews
,
B.
, and
Clark
,
J. E.
,
2014
,
Experimental Robotics
, Vol.
79
,
Springer
,
Berlin/Heidelberg
, pp.
375
388
.
44.
Norton
,
R. L.
,
2000
,
Design of Machinery
, 2nd ed.,
Wiley
,
New York City
.
45.
Miller
,
B. D.
,
Brown
,
J. M.
, and
Clark
,
J. E.
,
2016
,
Experimental Robotics
, Vol.
109
,
Springer
,
Nagasaki, Japan
, pp.
17
31
.
46.
Miller
,
B. D.
, and
Clark
,
J. E.
,
2015
, “
Dynamic Similarity and Scaling for the Design of Dynamical Legged Robots
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, IEEE, pp.
5719
5726
.
47.
Nicholson
,
J.
,
Jasper
,
J.
,
Kourchians
,
A.
,
McCutcheon
,
G.
,
Austin
,
M.
,
Gonzalez
,
M.
,
Pusey
,
J.
,
Karumanchi
,
S.
,
Hubicki
,
C.
, and
Clark
,
J.
,
2020
, “
Llama: Design and Control of an Omnidirectional Human Mission Scale Quadrupedal Robot
,”
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Las Vegas, NV
,
Oct. 24
, IEEE, pp.
3951
3958
.
48.
Miller
,
S.
,
2017
, “
Simscape Multibody Contact Force Library
,” https://store.tmotor.com/goods.php?id=322.
49.
Ding
,
L.
,
Gao
,
H.
,
Deng
,
Z.
,
Song
,
J.
,
Liu
,
Y.
,
Liu
,
G.
, and
Iagnemma
,
K.
,
2013
, “
Foot–Terrain Interaction Mechanics for Legged Robots: Modeling and Experimental Validation
,”
Int. J. Rob. Res.
,
32
(
13
), pp.
1585
1606
.
50.
Harper
,
M. Y.
,
Nicholson
,
J. V.
,
Collins
,
E. G.
,
Pusey
,
J.
, and
Clark
,
J. E.
,
2019
, “
Energy Efficient Navigation for Running Legged Robots
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, IEEE, pp.
6770
6776
51.
Grizzle
,
J. W.
,
Hurst
,
J.
,
Morris
,
B.
,
Park
,
H. -W.
, and
Sreenath
,
K.
,
2009
, “
Mabel, A New Robotic Bipedal Walker and Runner
,”
2009 American Control Conference
,
St. Louis, MO
,
June 10–12
, IEEE, pp.
2030
2036
.
52.
Spong
,
M.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2005
,
Robot Modeling and Control
(
Wiley Select coursepack
),
Wiley
.
53.
Catavitello
,
G.
,
Ivanenko
,
Y. P.
, and
Lacquaniti
,
F.
,
2015
, “
Planar Covariation of Hindlimb and Forelimb Elevation Angles During Terrestrial and Aquatic Locomotion of Dogs
,”
PLoS One
,
10
(
7
), p.
e0133936
.
You do not currently have access to this content.