Abstract

Tensegrity systems represent promising candidate mechanisms with in situ stiffness variability through changing the cables’ prestress levels. However, prestress-based stiffness behaviors of tensegrity systems with arbitrary kinematic joints have not been analyzed systematically. This paper adopts the natural absolute coordinates for static modeling of tensegrity systems consisting of rigid members and tension elements. Then, a generic stiffness analysis method is developed to formulate the reduced-basis tangent stiffness matrix, which is found to include three parts: positive semi-definite material and geometric stiffness matrices, and an indefinite constraint stiffness matrix. Based on these findings, a systematic stability-checking procedure is derived to determine prestress and super stability, which are qualitative indicators of the softening and stiffening effects in different tensegrity systems. Then, we proceed to quantify the range of prestress-based stiffness variability by formulating semi-definite programming problems that numerically pinpoint the maximum and zero stiffness points. Furthermore, this paper reveals the composable nature of multiple self-stress states, enabling the composability of stiffness properties in mechanism designs. Several numerical examples verify the efficacy and versatility of the proposed method and demonstrate interesting stiffness behaviors of tensegrity systems with kinematic joints.

References

1.
Buckminster
,
F. R.
,
1962
, Tensile-Integrity Structures, November.
2.
Liu
,
Y.
,
Bi
,
Q.
,
Yue
,
X.
,
Wu
,
J.
,
Yang
,
B.
, and
Li
,
Y.
,
2022
, “
A Review on Tensegrity Structures-Based Robots
,”
Mech. Mach. Theory
,
168
, p.
104571
.
3.
Paul
,
C.
,
Valero-Cuevas
,
F.
, and
Lipson
,
H.
,
2006
, “
Design and Control of Tensegrity Robots for Locomotion
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
944
957
.
4.
Böhm
,
V.
,
Kaufhold
,
T.
,
Zeidis
,
I.
, and
Zimmermann
,
K.
,
2017
, “
Dynamic Analysis of a Spherical Mobile Robot Based on a Tensegrity Structure With Two Curved Compressed Members
,”
Arch. Appl. Mech.
,
87
(
5
), pp.
853
864
.
5.
Sabelhaus
,
A. P.
,
Li
,
A. H.
,
Sover
,
K. A.
,
Madden
,
J. R.
,
Barkan
,
A. R.
,
Agogino
,
A. K.
, and
Agogino
,
A. M.
,
2020
, “
Inverse Statics Optimization for Compound Tensegrity Robots
,”
IEEE Rob. Autom. Lett.
,
5
(
3
), pp.
3982
3989
.
6.
Luo
,
J.
,
Wu
,
Z.
,
Xu
,
X.
,
Chen
,
Y.
,
Liu
,
Z.
, and
Ming
,
L.
,
2022
, “
Forward Statics of Tensegrity Robots With Rigid Bodies Using Homotopy Continuation
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
5183
5190
.
7.
Skelton
,
R. E.
, and
de Oliveira
,
M. C.
,
2009
,
Tensegrity Systems
,
Springer
,
New York, NY
.
8.
Wang
,
Y.
,
Xu
,
X.
, and
Luo
,
Y.
,
2023
, “
Self-Equilibrium, Mechanism Stiffness, and Self-Stress Design of General Tensegrity With Rigid Bodies or Supports: A Unified Analysis Approach
,”
ASME J. Appl. Mech.
,
90
(
8
), p.
081004
.
9.
Arsenault
,
M.
, and
Gosselin
,
C. M.
,
2006
, “
Kinematic, Static and Dynamic Analysis of a Planar 2-DOF Tensegrity Mechanism
,”
Mech. Mach. Theory
,
41
(
9
), pp.
1072
1089
.
10.
Aldrich
,
J. B.
,
Skelton
,
R. E.
, and
Kreutz-Delgado
,
K.
,
2003
, “
Control Synthesis for a Class of Light and Agile Robotic Tensegrity Structures
,”
The 2003 American Control Conference
,
Denver, CO
,
June 2003
, Vol. 6, pp.
5245
5251
.
11.
Lessard
,
S.
,
Castro
,
D.
,
Asper
,
W.
,
Chopra
,
S. D.
,
Baltaxe-Admony
,
L. B.
,
Teodorescu
,
M.
,
SunSpiral
,
V.
, and
Agogino
,
A.
,
2016
, “
A Bio-Inspired Tensegrity Manipulator With Multi-DOF, Structurally Compliant Joints
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
October 2016
, IEEE, pp.
5515
5520
..
12.
Feng
,
X.
,
Wu
,
Z.
,
Wang
,
Z.
,
Luo
,
J.
,
Xu
,
X.
, and
Qiu
,
Z.
,
2021
, “
Design and Experiments of a Bio-Inspired Tensegrity Spine Robot for Active Space Debris Capturing
,”
J. Phys.: Conf. Ser.
,
1885
(
5
), p.
052024
.
13.
Vespignani
,
M.
,
Friesen
,
J. M.
,
SunSpiral
,
V.
, and
Bruce
,
J.
,
2018
, “
Design of SUPERball V2, a Compliant Tensegrity Robot for Absorbing Large Impacts
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
October 2018
, IEEE, pp.
2865
2871
..
14.
Mirletz
,
B. T.
,
Park
,
I. -W.
,
Flemons
,
T. E.
,
Agogino
,
A. K.
,
Quinn
,
R. D.
, and
SunSpiral
,
V.
,
2014
, “
Design and Control of Modular Spine-Like Tensegrity Structures
,”
World Conference of the International Association for Structural Control and Monitoring (IACSM)
,
Barcalona, Spain
,
July 15
.
15.
Chen
,
B.
, and
Jiang
,
H.
,
2019
, “
Swimming Performance of a Tensegrity Robotic Fish
,”
Soft Rob.
,
6
(
4
), pp.
520
531
.
16.
Shintake
,
J.
,
Zappetti
,
D.
,
Peter
,
T.
,
Ikemoto
,
Y.
, and
Floreano
,
D.
,
2020
, “
Bio-Inspired Tensegrity Fish Robot
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 2020
, pp.
2887
2892
.
17.
Sabelhaus
,
A. P.
,
Ji
,
H.
,
Hylton
,
P.
,
Madaan
,
Y.
,
Yang
,
C.
,
Agogino
,
A. M.
,
Friesen
,
J.
, and
SunSpiral
,
V.
,
2015
, “
Mechanism Design and Simulation of the ULTRA Spine: A Tensegrity Robot
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol.
57120
,
American Society of Mechanical Engineers
, p.
V05AT08A059
.
18.
Schorr
,
P.
,
Zentner
,
L.
,
Zimmermann
,
K.
, and
Böhm
,
V.
,
2021
, “
Jumping Locomotion System Based on a Multistable Tensegrity Structure
,”
Mech. Syst. Signal Process.
,
152
, p.
107384
.
19.
Friesen
,
J.
,
Pogue
,
A.
,
Bewley
,
T.
,
de Oliveira
,
M.
,
Skelton
,
R.
, and
Sunspiral
,
V.
,
2014
, “
DuCTT: A Tensegrity Robot for Exploring Duct Systems
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 2014
, pp.
4222
4228
.
20.
Cui
,
J.
,
Wang
,
P.
,
Sun
,
T.
,
Ma
,
S.
,
Liu
,
S.
,
Kang
,
R.
, and
Guo
,
F.
,
2022
, “
Design and Experiments of a Novel Quadruped Robot With Tensegrity Legs
,”
Mech. Mach. Theory
,
171
, p.
104781
.
21.
Manríquez-Padilla
,
C. G.
,
Zavala-Pérez
,
O. A.
,
Pérez-Soto
,
G. I.
,
Rodríguez-Reséndiz
,
J.
, and
Camarillo-Gómez
,
K. A.
,
2019
, “
Form-Finding Analysis of a Class 2 Tensegrity Robot
,”
Appl. Sci.
,
9
(
15
), p.
2948
.
22.
Sun
,
J.
,
Song
,
G.
,
Chu
,
J.
, and
Ren
,
L.
,
2019
, “
An Adaptive Bioinspired Foot Mechanism Based on Tensegrity Structures
,”
Soft Rob.
,
6
(
6
), pp.
778
789
.
23.
Sumi
,
S.
,
Böhm
,
V.
, and
Zimmermann
,
K.
,
2017
, “
A Multistable Tensegrity Structure With a Gripper Application
,”
Mech. Mach. Theory
,
114
, pp.
204
217
.
24.
Guest
,
S. D.
,
2011
, “
The Stiffness of Tensegrity Structures
,”
IMA J. Appl. Math.
,
76
(
1
), pp.
57
66
.
25.
Boehler
,
Q.
,
Abdelaziz
,
S.
,
Vedrines
,
M.
,
Poignet
,
P.
, and
Renaud
,
P.
,
2017
, “
From Modeling to Control of a Variable Stiffness Device Based on a Cable-Driven Tensegrity Mechanism
,”
Mech. Mach. Theory
,
107
, pp.
1
12
.
26.
Ma
,
S.
,
Chen
,
Y.
,
Chen
,
M.
, and
Skelton
,
R. E.
,
2023
, “
Equilibrium and Stiffness Study of Clustered Tensegrity Structures With the Consideration of Pulley Sizes
,”
Eng. Struct.
,
282
, p.
115796
.
27.
Zappetti
,
D.
,
Arandes
,
R.
,
Ajanic
,
E.
, and
Floreano
,
D.
,
2020
, “
Variable-Stiffness Tensegrity Spine
,”
Smart Mater. Struct.
,
29
(
7
), p.
075013
.
28.
Azadi
,
M.
,
Behzadipour
,
S.
, and
Faulkner
,
G.
,
2010
, “
Variable Stiffness Spring Using Tensegrity Prisms
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041001
.
29.
Xie
,
X.
,
Xiong
,
D.
, and
Wen
,
J. Z.
,
2022
, “
A Wrist-Inspired Suspended Tubercle-Type Tensegrity Joint With Variable Stiffness Capacity
,”
Bioinsp. Biomim.
,
18
(
1
), p.
016010
.
30.
Chen
,
B.
,
Cui
,
Z.
, and
Jiang
,
H.
,
2018
, “
Producing Negative Active Stiffness in Redundantly Actuated Planar Rotational Parallel Mechanisms
,”
Mech. Mach. Theory
,
128
, pp.
336
348
.
31.
Chen
,
B.
, and
Jiang
,
H.
,
2021
, “
Body Stiffness Variation of a Tensegrity Robotic Fish Using Antagonistic Stiffness in a Kinematically Singular Configuration
,”
IEEE Trans. Rob.
,
37
(
5
), pp.
1712
1727
.
32.
Alamdari
,
A.
,
Haghighi
,
R.
, and
Krovi
,
V.
,
2018
, “
Stiffness Modulation in an Elastic Articulated-Cable Leg-Orthosis Emulator: Theory and Experiment
,”
IEEE Trans. Rob.
,
34
(
5
), pp.
1266
1279
.
33.
Thompson
,
J. M. T.
,
1969
, “
A General Theory for the Equilibrium and Stability of Discrete Conservative Systems
,”
Z. für Ange. Math. Phys. ZAMP
,
20
(
6
), pp.
797
846
.
34.
Connelly
,
R.
, and
Whiteley
,
W.
,
1996
, “
Second-Order Rigidity and Prestress Stability for Tensegrity Frameworks
,”
SIAM J. Discrete Maths
,
9
(
3
), pp.
453
491
.
35.
Connelly
,
R.
,
2002
, “Tensegrity Structures: Why Are They Stable?”.
Rigidity Theory and Applications
,
M. F.
Thorpe
and
P. M.
Duxbury
, eds.,
Fundamental Materials Research
.
Springer US
,
Boston, MA
, pp.
47
54
.
36.
Ohsaki
,
M.
, and
Zhang
,
J.
,
2006
, “
Stability Conditions of Prestressed Pin-Jointed Structures
,”
Int. J. Non-Linear Mech.
,
41
(
10
), pp.
1109
1117
.
37.
Zhang
,
J. Y.
, and
Ohsaki
,
M.
,
2007
, “
Stability Conditions for Tensegrity Structures
,”
Int. J. Solids Struct.
,
44
(
11
), pp.
3875
3886
.
38.
Guest
,
S.
,
2006
, “
The Stiffness of Prestressed Frameworks: A Unifying Approach
,”
Int. J. Solids Struct.
,
43
(
3–4
), pp.
842
854
.
39.
Pellegrino
,
S.
, and
Calladine
,
C. R.
,
1986
, “
Matrix Analysis of Statically and Kinematically Indeterminate Frameworks
,”
Int. J. Solids Struct.
,
22
(
4
), pp.
409
428
.
40.
Calladine
,
C. R.
, and
Pellegrino
,
S.
,
1991
, “
First-Order Infinitesimal Mechanisms
,”
Int. J. Solids Struct.
,
27
(
4
), pp.
505
515
.
41.
Azadi
,
M.
,
Behzadipour
,
S.
, and
Faulkner
,
G.
,
2009
, “
Antagonistic Variable Stiffness Elements
,”
Mech. Mach. Theory
,
44
(
9
), pp.
1746
1758
.
42.
Chen
,
B.
, and
Jiang
,
H.
,
2022
, “
Instability Results From Purely Rotational Stiffness for General Tensegrity Structure With Rigid Bodies
,”
Mech. Mach. Theory
,
167
, p.
104485
.
43.
Wang
,
Y.
,
Xu
,
X.
, and
Luo
,
Y.
,
2023
, “
Stability Conditions for General Tensegrity With Rigid Bodies
,”
J. Eng. Mech.
,
149
(
8
), p.
04023045
.
44.
Cheong
,
J.
, and
Skelton
,
R. E.
,
2015
, “
Nonminimal Dynamics of General Class K Tensegrity Systems
,”
Int. J. Struct. Stabil. Dyn.
,
15
(
02
), p.
1450042
.
45.
Ma
,
S.
,
Chen
,
M.
, and
Skelton
,
R. E.
,
2022
, “
Tensegrity System Dynamics Based on Finite Element Method
,”
Comp. Struct.
,
280
, p.
114838
.
46.
Ma
,
S.
,
Chen
,
M.
,
Dong
,
Y.
,
Yuan
,
X.
, and
Skelton
,
R. E.
,
2024
, “
Statics and Dynamics of Pulley-Driven Tensegrity Structures With Sliding Cable Modeling
,”
Appl. Math. Model.
,
130
, pp.
378
400
.
47.
Pappalardo
,
C. M.
,
2015
, “
A Natural Absolute Coordinate Formulation for the Kinematic and Dynamic Analysis of Rigid Multibody Systems
,”
Nonlinear Dyn.
,
81
(
4
), pp.
1841
1869
.
48.
Pappalardo
,
C. M.
, and
Guida
,
D.
,
2018
, “
Dynamic Analysis of Planar Rigid Multibody Systems Modeled Using Natural Absolute Coordinates
,”
Appl. Comput. Mech.
,
12
(
1
), pp.
73
110
.
49.
Luo
,
J.
,
Xu
,
X.
,
Wu
,
Z.
, and
Wu
,
S.
,
2023
, A Unified Approach for Dynamic Analysis of Tensegrity Structures With Arbitrary Rigid Bodies and Rigid Bars.
50.
De Jalon
,
J. G.
, and
Bayo
,
E.
,
1994
,
Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge
(
Mechanical Engineering Series
),
Springer-Verlag
,
New York
.
51.
Betsch
,
P.
, and
Leyendecker
,
S.
,
2006
, “
The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part II: Multibody Dynamics
,”
Int. J. Numer. Methods Eng.
,
67
(
4
), pp.
499
552
.
52.
Rao
,
S. S.
,
2019
,
Engineering Optimization: Theory and Practice
,
John Wiley & Sons
,
Hoboken, NJ
.
53.
Carpinteri
,
A.
,
1997
,
Structural Mechanics: A Unified Approach
,
CRC Press
,
New York
.
54.
Motzkin
,
T. S.
,
Raiffa
,
H.
,
Thompson
,
G. L.
, and
Thrall
,
R. M.
,
1953
, “
The Double Description Method
,”
Contrib. Theory Games
,
2
(
28
), pp.
51
73
.
55.
Eriksson
,
A.
, and
Nordmark
,
A.
,
2019
, “
Constrained Stability of Conservative Static Equilibrium
,”
Comput. Mech.
,
64
(
4
), pp.
1199
1219
.
56.
Garstka
,
M.
,
Cannon
,
M.
, and
Goulart
,
P.
,
2021
, “
COSMO: A Conic Operator Splitting Method for Convex Conic Problems
,”
J. Optim. Theory Appl.
,
190
(
3
), pp.
779
810
.
57.
Tietz
,
B. R.
,
Carnahan
,
R. W.
,
Bachmann
,
R. J.
,
Quinn
,
R. D.
, and
SunSpiral
,
V.
,
2013
, “
Tetraspine: Robust Terrain Handling on a Tensegrity Robot Using Central Pattern Generators
,” 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics,
IEEE
, pp.
261
267
.
58.
Zhao
,
W.
,
Pashkevich
,
A.
,
Klimchik
,
A.
, and
Chablat
,
D.
,
2022
, “
Elastostatic Modeling of Multi-link Flexible Manipulator Based on Two-Dimensional Dual-Triangle Tensegrity Mechanism
,”
ASME J. Mech. Rob.
,
14
(
2
), p.
021002
.
You do not currently have access to this content.