Abstract

Powder-based additive manufacturing technologies such as powder bed fusion (PBF) using a laser beam (PBF-LB) and PBF using an electron beam (PBF-EB) allow the manufacturing of complex, patient-specific implants from titanium alloys at appropriate manufacturing expenses and thus production cost. To meet medical quality requirements, mechanical post-treatment (e.g., grinding and polishing) is often required. However, different medical applications require specific quality characteristics. It is therefore necessary to assess the fulfillment of the requirements for each case individually with regard to the manufacturing technologies. This study investigated the potential of the two mentioned additive manufacturing technologies for manufacturing patient-specific, topology-optimized bone plates that are used for osteosynthesis (the joining of bone segments) in the reconstruction of the mandible (lower jaw). Identical individualized implants were manufactured and subsequently treated with established industrial processes and examined according to medical quality requirements. Crucial quality requirements for this medical application are the shape accuracy (for exact bone positioning and even load transmission) as well as the surface quality (to enhance fatigue strength and prevent bone ingrowth in view of the subsequent easy removal of the plates). The machining of the implants is shown in comparison to distinguish the two manufacturing processes from established procedures.

References

1.
Hidalgo
,
D. A.
,
1989
, “
Fibula Free Flap: A New Method of Mandible Reconstruction
,”
Plast. Reconstr. Surg.
,
84
(
1
), pp.
71
79
.10.1097/00006534-198907000-00014
2.
Hölzle
,
F.
,
Kesting
,
M. R.
,
Hölzle
,
G.
,
Watola
,
A.
,
Loeffelbein
,
D. J.
,
Ervens
,
J.
, and
Wolff
,
K.-D.
,
2007
, “
Clinical Outcome and Patient Satisfaction After Mandibular Reconstruction With Free Fibula Flaps
,”
Int. J. Oral Maxillofac. Surg.
,
36
(
9
), pp.
802
806
.10.1016/j.ijom.2007.04.013
3.
Neligan
,
P. C.
,
2013
, “
Head and Neck Reconstruction
,”
Plast. Reconstr. Surg.
,
131
(
2
), pp.
260
269
.10.1097/PRS.0b013e3182778938
4.
Seebach
,
M.
,
Theurer
,
F.
,
Foehr
,
P.
,
Deimling
,
C. V.
,
Burgkart
,
R.
, and
Zaeh
,
M. F.
,
2018
, “
Design of Bone Plates for Mandibular Reconstruction Using Topology and Shape Optimization
,”
Advances in Structural and Multidisciplinary Optimization: Proceedings of the 12th World Congress of Structural and Multidisciplinary Optimization (WCSMO12)
,
Springer
,
Cham
, Switzerland, pp.
2086
2096
.
5.
J.-E.
Hausamen
,
E.
Machtens
,
J.
Reuther
,
J. E.
Hausamen
,
E.
Machtens
,
J. F.
Reuther
,
H.
Eufinger
, and
A.
Kubler
, eds.,
2012
,
Mund-, Kiefer- und Gesichtschirurgie
, 4th ed.,
Springer
,
Dordrecht, The Netherlands
.
6.
Wilde
,
F.
,
Hanken
,
H.
,
Probst
,
F.
,
Schramm
,
A.
,
Heiland
,
M.
, and
Cornelius
,
C.-P.
,
2015
, “
Multicenter Study on the Use of Patient-Specific CAD/CAM Reconstruction Plates for Mandibular Reconstruction
,”
Int. J. Comput. Assisted Radiol. Surg.
,
10
(
12
), pp.
2035
2051
.10.1007/s11548-015-1193-2
7.
Maurer
,
P.
,
Eckert
,
A. W.
,
Kriwalsky
,
M. S.
, and
Schubert
,
J.
,
2010
, “
Scope and Limitations of Methods of Mandibular Reconstruction: A Long-Term Follow-Up
,”
Br. J. Oral Maxillofac. Surg.
,
48
(
2
), pp.
100
104
.10.1016/j.bjoms.2009.07.005
8.
Robey
,
A. B.
,
Spann
,
M. L.
,
McAuliff
,
T. M.
,
Meza
,
J. L.
,
Hollins
,
R. R.
, and
Johnson
,
P. J.
,
2008
, “
Comparison of Miniplates and Reconstruction Plates in Fibular Flap Reconstruction of the Mandible
,”
Plast. Reconstr. Surg.
,
122
(
6
), pp.
1733
1738
.10.1097/PRS.0b013e31818a9ac5
9.
Wennerberg
,
A.
, and
Albrektsson
,
T.
,
2009
, “
Effects of Titanium Surface Topography on Bone Integration: A Systematic Review
,”
Clin. Oral Implants Res.
,
20
(
4
), pp.
172
184
.10.1111/j.1600-0501.2009.01775.x
10.
Eberhardt
,
A. W.
,
Kim
,
B. S.
,
Rigney
,
E. D.
,
Kutner
,
G. L.
, and
Harte
,
C. R.
,
1995
, “
Effects of Precoating Surface Treatments on Fatigue of Ti-6A1-4V
,”
J. Appl. Biomater.
,
6
(
3
), pp.
171
174
.10.1002/jab.770060305
11.
Weißbach
,
W.
,
Dahms
,
M.
, and
Jaroschek
,
C.
,
2015
,
Werkstoffkunde: Strukturen, Eigenschaften, Prüfung
, 19th ed.,
Springer Vieweg
,
Wiesbaden, Germany
.
12.
Hitzler
,
L.
,
Merkel
,
M.
,
Hall
,
W.
, and
Öchsner
,
A.
,
2018
, “
A Review of Metal Fabricated With Laser- and Powder-Bed Based Additive Manufacturing Techniques: Process, Nomenclature, Materials, Achievable Properties, and Its Utilization in the Medical Sector
,”
Adv. Eng. Mater.
,
20
(
5
), p.
1700658
.10.1002/adem.201700658
13.
Shipley
,
H.
,
McDonnell
,
D.
,
Culleton
,
M.
,
Coull
,
R.
,
Lupoi
,
R.
,
O'Donnell
,
G.
, and
Trimble
,
D.
,
2018
, “
Optimisation of Process Parameters to Address Fundamental Challenges During Selective Laser Melting of Ti-6Al-4V: A Review
,”
Int. J. Mach. Tools Manuf.
,
128
, pp.
1
20
.10.1016/j.ijmachtools.2018.01.003
14.
Tuomi
,
J. T.
,
Björkstrand
,
R. V.
,
Pernu
,
M. L.
,
Salmi
,
M. V. J.
,
Huotilainen
,
E. I.
,
Wolff
,
J. E. H.
,
Vallittu
,
P. K.
, and
Mäkitie
,
A. A.
,
2017
, “
In Vitro Cytotoxicity and Surface Topography Evaluation of Additive Manufacturing Titanium Implant Materials
,”
J. Mater. Sci.. Mater. Med.
,
28
(
3
), p.
53
.10.1007/s10856-017-5863-1
15.
Smith
,
M. H.
,
Schrag
,
C. H.
,
Chandarana
,
S. P.
,
Cobb
,
J. G.
,
Matthews
,
T. W.
,
Mckenzie
,
C. D.
, and
Matthews
,
J. L.
,
2019
, “
Novel Plate Design to Improve Mandibular and Maxillary Reconstruction With the Osteocutaneous Fibula Flap
,”
Plast. Reconstr. Surg.
,
7
(
1
), pp.
1
4
.10.1097/GOX.0000000000002094
16.
Mazzoni
,
S.
,
Bianchi
,
A.
,
Schiariti
,
G.
,
Badiali
,
G.
, and
Marchetti
,
C.
,
2015
, “
Computer-Aided Design and Computer-Aided Manufacturing Cutting Guides and Customized Titanium Plates Are Useful in Upper Maxilla Waferless Repositioning
,”
J. Oral Maxillofac. Surg.
,
73
(
4
), pp.
701
707
.10.1016/j.joms.2014.10.028
17.
Bedogni
,
A.
,
Bettini
,
G.
,
Ferronato
,
G.
,
Fusetti
,
S.
, and
Saia
,
G.
,
2014
, “
Replacement of Fractured Reconstruction Plate With Customized Mandible Implant: A Novel Technique
,”
Laryngoscope
,
124
(
2
), pp.
401
404
.10.1002/lary.24230
18.
Goodson
,
A. M.
,
Kittur
,
M. A.
,
Evans
,
P. L.
, and
Williams
,
E. M.
,
2019
, “
Patient-Specific, Printed Titanium Implants for Reconstruction of Mandibular Continuity Defects: A Systematic Review of the Evidence
,”
J. Cranio-Maxillofac. Surg.
,
47
(
6
), pp.
968
976
.10.1016/j.jcms.2019.02.010
19.
Hrabe
,
N.
,
Gnäupel-Herold
,
T.
, and
Quinn
,
T.
,
2017
, “
Fatigue Properties of a Titanium Alloy (Ti–6Al–4V) Fabricated Via Electron Beam Melting (EBM): Effects of Internal Defects and Residual Stress
,”
Int. J. Fatigue
,
94
(
2
), pp.
202
210
.10.1016/j.ijfatigue.2016.04.022
20.
Ciocca
,
L.
,
Marchetti
,
C.
,
Mazzoni
,
S.
,
Baldissara
,
P.
,
Gatto
,
M. R. A.
,
Cipriani
,
R.
,
Scotti
,
R.
, and
Tarsitano
,
A.
,
2015
, “
Accuracy of Fibular Sectioning and Insertion Into a Rapid-Prototyped Bone Plate, for Mandibular Reconstruction Using CAD-CAM Technology
,”
J. Cranio-Maxillofac. Surg.
,
43
(
1
), pp.
28
33
.10.1016/j.jcms.2014.10.005
21.
Volk
,
R.
,
2005
,
Rauheitsmessung: Theorie Und Praxis
, 1st ed.,
Beuth
,
Berlin
.
22.
Williams
,
D. N.
, and
Wood
,
R. A.
,
1971
,
Effects of Surface Condition on the Mechanical Properties of Titanium and Its Alloys
,
Metals and Ceramics Information Center
,
Springfield, VA
.
23.
OPEN MIND Technologies
,
2016
, “
CAM-Strategien und Funktionen für die effiziente Fertigung
,”
OPEN MIND Technologies
,
Weßling, Germany
.
24.
Hehenberger
,
P.
,
2011
,
Computerunterstützte Fertigung: Eine Kompakte Einführung
,
Springer
,
Berlin
.
You do not currently have access to this content.