Abstract

In this paper, a novel surgical robotic platform intended to assist surgeons in cervical spine surgery is presented. The purpose of this surgery is to treat the cervical spine instabilities. The surgical procedure requires drilling into specific region of the vertebrae in order to attach spinal implants and thus ensure a normal spacing between each vertebra concerned. In this context, the proposed robotic platform allows to control and restrict the surgeon's movements to a specific drilling direction set by the surgeon. The current platform is composed of a collaborative robot with seven degrees-of-freedom (DoF) equipped with a drilling tool and directly comanipulated by the surgeon. A motion capture system, as an exteroceptive sensor device, provides the robot controller with the movement data of the vertebra to be drilled. Robot Operating System (ROS) framework is used to enable real-time communication between the collaborative robot and the visual exteroceptive device. In addition, an implemented compliance control program allows to enhance the safety aspect of the robotic platform. Indeed, the collaborative robot follows the patient's movements while constraining the tool movements to an optimal trajectory as well as a limited drilling depth selected by the surgeon. The collaborative robot's elbow movements are also restricted by exploiting the null-space in order to avoid collisions with other equipment or the medical team members. Experimental drilling trials have been performed by an orthopedic surgeon to validate the usefulness and different functionalities of the developed robotic platform, and provide that a collaborative robot can comply with a spine surgery procedure. These preliminary tests were performed in a lumbar spine model for which the use of a robotic device is most frequent due to a lower complexity compared to the cervical spine.

References

1.
Paris Spine Institute
,
2021
, “
Cervical Spine
,” Paris Spine Institute, Paris, France, accessed Mar. 16, 2021, https://institutdurachis.com/pathologies-rachis/rachis-cervical/
2.
Farooq Usmani
,
M.
,
Gopinath
,
R.
,
Camacho
,
J. E.
,
Gentry
,
R. D.
, and
Ludwig
,
S. C.
,
2020
, “
Management of Cranio-Cervical Injuries: C1-C2 Posterior Cervical Fusion and Decompression
,”
Semin. Spine Surg.
,
32
(
1
), p.
100782
.10.1016/j.semss.2019.100782
3.
Huang
,
M.
,
Tetreault
,
T. A.
,
Vaishnav
,
A.
,
York
,
P. J.
, and
Staub
,
B. N.
,
2021
, “
The Current State of Navigation in Robotic Spine Surgery
,”
Ann. Transl. Med.
,
9
(
1
), p.
86
.10.21037/atm-2020-ioi-07
4.
Du
,
W.
,
Zou
,
D.
,
Zhang
,
J.
,
Liu
,
J.
,
Qu
,
W.
, and
Zhang
,
S.
,
2021
, “
Guide Wire Displacement in Robot-Assisted Spinal Pedicle Screw Implantation
,”
Videosurg. Other Miniinvasive Tech.
,
16
(
3
), pp.
526
535
.10.5114/wiitm.2021.103952
5.
Mason
,
A.
,
Paulsen
,
R.
,
Babuska
,
J. M.
,
Rajpal
,
S.
,
Burneikiene
,
S.
,
Nelson
,
E. L.
, and
Villavicencio
,
A.
,
2013
, “
The Accuracy of Pedicle Screw Placement Using Intraoperative Image Guidance Systems: A Systematic Review
,”
J. Neurosurg.
,
20
(
2
), pp.
196
203
.10.3171/2013.11.SPINE13413
6.
Gelalis
,
I. D.
,
Paschos
,
N.
,
Pakos
,
E. E.
,
Politis
,
A.
,
Arnaoutoglou
,
C.
,
Karageorgos
,
A.
,
Ploumis
,
A.
, and
Xenakis
,
T. A.
,
2012
, “
Accuracy of Pedicle Screw Placement: A Systematic Review of Prospective In Vivo Studies Comparing Free Hand, Fluoroscopy Guidance and Navigation Techniques
,”
Eur. Spine J.
,
21
(
2
), pp.
247
255
.10.1007/s00586-011-2011-3
7.
Molliqaj
,
G.
,
Paun
,
L.
,
Nouri
,
A.
,
Girod
,
P.-P.
,
Schaller
,
K.
, and
Tessitore
,
E.
,
2020
, “
The Role of Robotics in Improving Surgical Outcome in Spinal Pathologies
,”
World Neurosurg.
,
140
, pp.
664
673
.10.1016/j.wneu.2020.05.132
8.
Menger
,
R. P.
,
Savardekar
,
A. R.
,
Farokhi
,
F.
, and
Sin
,
A.
,
2018
, “
A Cost-Effectiveness Analysis of the Integration of Robotic Spine Technology in Spine Surgery
,”
Neurospine
,
15
(
3
), pp.
216
224
.10.14245/ns.1836082.041
9.
Bargar
,
W. L.
, and
Netravali
,
N. A.
,
2019
, “
Total Hip Arthroplasty Technique: TSolution One
,”
Robotics in Knee and Hip Arthroplasty
, Springer Cham, Switzerland, pp.
219
224
.10.1007/978-3-030-16593-2_21
10.
Monogram Orthopedics
, 2021, “
Presentation of the Monogram Platform
,” Monogram Orthopedics, Austin, TX, accessed Mar. 24, 2021, https://www.monogramorthopedics.com/
11.
Intuitive
, 2021, “
Da Vinci Surgical Systems
,” Intuitive, Sunnyvale, CA, accessed Apr. 5, 2021, https://www.intuitive.com/en-us/products-and-services/da-vinci/systems
12.
Avrumova
,
F.
,
Sivaganesan
,
A.
,
Alluri
,
R. K.
,
Vaishnav
,
A.
,
Qureshi
,
S. A.
, and
Lebl
,
D. R.
,
2021
, “
Workflow and Efficiency of Robotic-Assisted Navigation in Spine Surgery
,”
HSS J.
,
17
(
3
), pp.
302
307
.10.1177/15563316211026658
13.
Lonjon
,
N.
,
Chan-Seng
,
E.
,
Costalat
,
V.
,
Bonnafoux
,
B.
,
Vassal
,
M.
, and
Boetto
,
J.
,
2016
, “
Robot-Assisted Spine Surgery: Feasibility Study Through a Prospective Case-Matched Analysis
,”
Eur. Spine J.
,
25
(
3
), pp.
947
955
.10.1007/s00586-015-3758-8
14.
Khan
,
A.
,
Meyers
,
J. E.
,
Siasios
,
I.
, and
Pollina
,
J.
,
2019
, “
Next-Generation Robotic Spine Surgery: First Report on Feasibility, Safety, and Learning Curve
,”
Oper. Neurosurg.
,
17
(
1
), pp.
61
69
.10.1093/ons/opy280
15.
Elswick
,
C. M.
,
Strong
,
M. J.
,
Joseph
,
J. R.
,
Saadeh
,
Y.
,
Oppenlander
,
M.
, and
Park
,
P.
,
2020
, “
Robotic-Assisted Spinal Surgery: Current Generation Instrumentation and New Applications
,”
Neurosurg. Clin. North Am.
,
31
(
1
), pp.
103
110
.10.1016/j.nec.2019.08.012
16.
Johnson & Johnson
, 2021, “
VELYS Digital Surgery
,” DePuySynthes of Johnson & Johnson, Raynham, MA, accessed Apr. 12, 2021, https://www.jnjmedicaldevices.com/en-US/velys
17.
Hagag
,
B.
,
Abovitz
,
R.
,
Kang
,
H.
,
Schmitz
,
B.
, and
Conditt
,
M.
,
2011
, “
RIO: Robotic-Arm Interactive Orthopedic System MAKOplasty: User Interactive Haptic Orthopedic Robotics
,”
Surgical Robotics
, Springer, Boston, MA, pp.
219
246
.10.1007/978-1-4419-1126-1_10
18.
CCHST
, 2015, “
Ergonomics of Hand Tools
,” CCHST, Hamilton, ON, Canada, accessed May 3, 2021, https://www.cchst.ca//oshanswers/ergonomics/handtools/tooldesign.html
19.
Siciliano
,
B.
, and
Khatib
,
O.
,
2016
,
Springer Handbook of Robotics
, 2nd ed., Springer Cham, Switzerland, Chaps. 3 and 6.10.1007/978-3-319-32552-1
20.
Salah
,
S.
,
Sandoval Arévalo
,
J. S.
,
Moncef
,
G.
,
Laribi
,
M. A.
, and
Zeghloul
,
S.
,
2020
, “
Online Payload Identification of a Franka Emika Robot for Medical Applications
,”
Advances in Service and Industrial Robotics
. RAAD, Mechanism and Machine Science, Springer Cham, Switzerland, June 19, p.
84
.10.1007/978-3-030-48989-2_15
21.
Dietrich
,
A.
,
Bussmann
,
K.
,
Petit
,
F.
,
Kotyczka
,
P.
,
Ott
,
C.
,
Lohmann
,
B.
, and
Albu-Schäffer
,
A.
,
2016
, “
Whole-Body Impedance Control of Wheeled Mobile Manipulators: Stability Analysis and Experiments on the Humanoid Robot Rollin' Justin
,”
Auton. Rob.
,
40
(
3
), pp.
505
517
.10.1007/s10514-015-9438-z
22.
Sandoval
,
J.
,
Su
,
H.
,
Vieyres
,
P.
,
Poisson
,
G.
,
Ferrigno
,
G.
, and
De Momi
,
E.
,
2018
, “
Collaborative Framework for Robot-Assisted Minimally Invasive Surgery Using a 7-DoF Anthropomorphic Robot
,”
Rob. Auton. Syst.
,
106
, pp.
95
106
.10.1016/j.robot.2018.04.001
23.
Ayoubi
,
Y.
,
Laribi
,
M. A.
,
Courreges
,
F.
,
Zeghloul
,
S.
, and
Arsicault
,
M.
,
2016
, “
A Complete Methodology to Design a Safety Mechanism for Prismatic Joint Implementation
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, Daejeon, South Korea, Oct. 9–14, pp.
304
309
.10.1109/IROS.2016.7759071
24.
Ayoubi
,
Y.
,
Laribi
,
M. A.
,
Courreges
,
F.
,
Zeghloul
,
S.
, and
Arsicault
,
M.
,
2018
, “
Complete Design Methodology of Biomimetic Safety Device for Cobots' Prismatic Joints
,”
Rob. Auton. Syst.
,
102
, pp.
44
53
.10.1016/j.robot.2018.01.008
25.
Kochanski
,
R.
,
Alahmadi
,
H.
, and
O'Toole
,
J. E.
,
2019
, “
Image Guidance in Minimally Invasive Spine Surgery
,”
Minimally Invasive Spine Surgery
, Springer Cham, Switzerland, pp.
83
92
.10.1007/978-3-030-19007-1
26.
Kleck
,
C. J.
,
Johnson
,
C.
,
Akiyama
,
M.
,
Burger
,
E. L.
,
Cain
,
C. J.
, and
Patel
,
V. V.
,
2018
, “
One-Step Minimally Invasive Pedicle Screw Instrumentation Using O-Arm and Stealth Navigation
,”
Clin. Spine Surg.
,
31
(
5
), pp.
197
202
.10.1097/BSD.0000000000000616
You do not currently have access to this content.