Abstract

This study presents a novel approach to monitoring pH changes in the cecum, a critical step toward understanding the dynamic interactions between the gut microbiota and probiotics. By repurposing the Bravo® capsule, originally designed for esophageal pH monitoring, we demonstrate its potential for accurate, continuous, and nonobstructive pH detection within a simulated cecal environment. To facilitate this investigation, we introduce the first synthetic cecal content (SCC) formulation. Our formulation closely mimics the mechanical properties of porcine cecal contents, particularly in terms of viscosity and shear response. This SCC recipe addresses a significant gap in the availability of simulated biological fluids for in vitro medical device testing. Rheometric analyses confirm the SCC's consistency with biological cecal contents, providing a cost-effective and efficient platform for preliminary device evaluations. Experimental results show that the Bravo® capsule can accurately detect pH changes within the SCC, closely matching readings from a handheld pH probe. The successful validation of the Bravo® capsule's performance in a simulated cecal environment, along with the development of a reliable SCC formulation, paves the way for future in vivo studies in porcine models. This research represents a significant advancement in the field of gut microbiome monitoring and holds promise for the development of targeted, microbiome-based therapeutics. By enabling real-tim/e, in situ analysis of the cecal microbiota's response to various interventions, this approach has the potential to revolutionize our understanding of the complex interplay between probiotics, diet, and gut health.

References

1.
Andrew Clayton
,
T.
,
Lindon
,
J. C.
,
Cloarec
,
O.
,
Antti
,
H.
,
Charuel
,
C.
,
Hanton
,
G.
,
Provost
,
J.-P.
,
Le Net
,
J.-L.
, and
Baker
,
D.
,
2006
, “
Pharmaco-Metabonomic Phenotyping and Personalized Drug Treatment
,”
Nature
,
440
(
7087
), pp.
1073
1077
.10.1038/nature04648
2.
Kazemian
,
N.
,
Mahmoudi
,
M.
,
Halperin
,
F.
,
Wu
,
J. C.
, and
Pakpour
,
S.
,
2020
, “
Gut Microbiota and Cardiovascular Disease: Opportunities and Challenges
,”
Microbiome
,
8
(
1
), p.
36
.10.1186/s40168-020-00821-0
3.
Kinross
,
J. M.
,
Darzi
,
A. W.
, and
Nicholson
,
J. K.
,
2011
, “
Gut Microbiome-Host Interactions in Health and Disease
,”
Genome Med.
,
3
(
3
), p.
14
.10.1186/gm228
4.
Fassarella
,
M.
,
Blaak
,
E. E.
,
Penders
,
J.
,
Nauta
,
A.
,
Smidt
,
H.
, and
Zoetendal
,
E. G.
,
2021
, “
Gut Microbiome Stability and Resilience: Elucidating the Response to Perturbations in Order to Modulate Gut Health
,”
Gut
,
70
(
3
), pp.
595
605
.10.1136/gutjnl-2020-321747
5.
Akdis
,
C. A.
,
2021
, “
Does the Epithelial Barrier Hypothesis Explain the Increase in Allergy, Autoimmunity and Other Chronic Conditions?
,”
Nat. Rev. Immunol.
,
21
(
11
), pp.
739
751
.10.1038/s41577-021-00538-7
6.
Marchesi
,
J. R.
,
Holmes
,
E.
,
Khan
,
F.
,
Kochhar
,
S.
,
Scanlan
,
P.
,
Shanahan
,
F.
,
Wilson
,
I. D.
, and
Wang
,
Y.
,
2007
, “
Rapid and Noninvasive Metabonomic Characterization of Inflammatory Bowel Disease
,”
J. Proteome Res.
,
6
(
2
), pp.
546
551
.10.1021/pr060470d
7.
Wolter
,
M.
,
Grant
,
E. T.
,
Boudaud
,
M.
,
Steimle
,
A.
,
Pereira
,
G. V.
,
Martens
,
E. C.
, and
Desai
,
M. S.
,
2021
, “
Leveraging Diet to Engineer the Gut Microbiome
,”
Nat. Rev. Gastroenterol. Hepatol.
,
18
(
12
), pp.
885
902
.10.1038/s41575-021-00512-7
8.
Kolodziejczyk
,
A. A.
,
Zheng
,
D.
, and
Elinav
,
E.
,
2019
, “
Diet–Microbiota Interactions and Personalized Nutrition
,”
Nat. Rev. Microbiol.
,
17
(
12
), pp.
742
753
.10.1038/s41579-019-0256-8
9.
Tang
,
Q.
,
Jin
,
G.
,
Wang
,
G.
,
Liu
,
T.
,
Liu
,
X.
,
Wang
,
B.
, and
Cao
,
H.
,
2020
, “
Current Sampling Methods for Gut Microbiota: A Call for More Precise Devices
,”
Front. Cell. Infect. Microbiol.
,
10
, p.
151
.10.3389/fcimb.2020.00151
10.
Söderlind
,
E.
,
Abrahamsson
,
B.
,
Erlandsson
,
F.
,
Wanke
,
C.
,
Iordanov
,
V.
, and
von Corswant
,
C.
,
2015
, “
Validation of the IntelliCap® System as a Tool to Evaluate Extended Release Profiles in Human GI Tract Using Metoprolol as Model Drug
,”
J. Control. Release
,
217
, pp.
300
307
.10.1016/j.jconrel.2015.09.024
11.
Rezaei Nejad
,
H.
,
Oliveira
,
B. C. M.
,
Sadeqi
,
A.
,
Dehkharghani
,
A.
,
Kondova
,
I.
,
Langermans
,
J. A. M.
,
Guasto
,
J. S.
,
Tzipori
,
S.
,
Widmer
,
G.
, and
Sonkusale
,
S. R.
,
2019
, “
Ingestible Osmotic Pill for In Vivo Sampling of Gut Microbiomes
,”
Adv. Intell. Syst.
,
1
(
5
), p.
1900053
.10.1002/aisy.201900053
12.
Takahashi
,
T.
, and
Sakata
,
T.
,
2004
, “
Viscous Properties of Pig Cecal Contents and the Contribution of Solid Particles to Viscosity
,”
Nutrition
,
20
(
4
), pp.
377
382
.10.1016/j.nut.2003.12.011
13.
Lawenko
,
R. M. A.
, and
Lee
,
Y. Y.
,
2015
, “
Evaluation of Gastroesophageal Reflux Disease Using the Bravo Capsule pH System
,”
J. Neurogastroenterol. Motil.
,
22
(
1
), pp.
25
30
.10.5056/jnm15151
14.
Mojaverian
,
P.
,
1996
, “
Evaluation of Gastrointestinal pH and Gastric Residence Time Via the Heidelberg Radiotelemetry Capsule: Pharmaceutical Application
,”
Drug Dev. Res.
,
38
(
2
), pp.
73
85
.10.1002/(SICI)1098-2299(199606)38:2<73::AID-DDR1>3.0.CO;2-H
15.
Rehan
,
M.
,
Al-Bahadly
,
I.
,
Thomas
,
D. G.
,
Young
,
W.
,
Cheng
,
L. K.
, and
Avci
,
E.
,
2024
, “
Smart Capsules for Sensing and Sampling the Gut: Status, Challenges and Prospects
,”
Gut
,
73
(
1
), pp.
186
202
.10.1136/gutjnl-2023-329614
16.
Innes
,
E.
,
Yiu
,
H. H. P.
,
McLean
,
P.
,
Brown
,
W.
, and
Boyles
,
M.
,
2021
, “
Simulated Biological Fluids—a Systematic Review of Their Biological Relevance and Use in Relation to Inhalation Toxicology of Particles and Fibres
,”
Crit. Rev. Toxicol.
,
51
(
3
), pp.
217
248
.10.1080/10408444.2021.1903386
17.
Mohammed
,
R. U. R.
,
Bassari
,
V.
,
Rasmussen
,
R.
, and
Terry
,
B. S.
,
2023
, “
A Portable, Vacuum-Operated, and Purely Mechanical Device for Extracting Feces by Suction to Cure Chronic Anal Fissures
,”
ASME J. Med. Devices
,
17
(
1
), p.
011005
.10.1115/1.4056251
18.
Wignarajah
,
K.
,
Litwiller
,
E.
,
Fisher
,
J. W.
, and
Hogan
,
J.
,
2006
, “
Simulated Human Feces for Testing Human Waste Processing Technologies in Space Systems
,”
SAE
Paper No. 2006-1-2180.10.4271/2006-1-2180
19.
Mandsberg
,
N. K.
,
Christfort
,
J. F.
,
Kamguyan
,
K.
,
Boisen
,
A.
, and
Srivastava
,
S. K.
,
2020
, “
Orally Ingestible Medical Devices for Gut Engineering
,”
Adv. Drug Deliv. Rev.
,
165-166
, pp.
142
154
.10.1016/j.addr.2020.05.004
20.
Rie
,
J. M.
,
Pepple
,
S.
, and
Rudolph
,
C.
,
1998
, “
Effects of Fiber Laxatives and Calcium Docusate on Regional Water Content and Viscosity of Digesta in the Large Intestine of the Pig
,”
Dig. Dis. Sci.
,
43
(
4
), pp.
738
745
.10.1023/A:1018805812321
21.
Johansen
,
H. N.
,
Knudsen
,
K. E. B.
,
Sandström
,
B.
, and
Skjøth
,
F.
,
1996
, “
Effects of Varying Content of Soluble Dietary Fibre From Wheat Flour and Oat Milling Fractions on Gastric Emptying in Pigs
,”
Br. J. Nutr.
,
75
(
3
), pp.
339
351
.10.1079/BJN19960138
22.
Slawinski
,
P. R.
,
2015
, “
Capsule Endoscopy of the Future: What's on the Horizon?
,”
World J. Gastroenterol.
,
21
(
37
), p.
10528
.10.3748/wjg.v21.i37.10528
23.
Valdastri
,
P.
,
Simi
,
M.
, and
Webster
,
R. J.
,
2012
, “
Advanced Technologies for Gastrointestinal Endoscopy
,”
Annu. Rev. Biomed. Eng.
,
14
(
1
), pp.
397
429
.10.1146/annurev-bioeng-071811-150006
24.
Mamula
,
P.
,
Tierney
,
W. M.
,
Banerjee
,
S.
,
Desilets
,
D.
,
Diehl
,
D. L.
,
Farraye
,
F. A.
,
Kaul
,
V.
,
Kethu
,
S. R.
,
Kwon
,
R. S.
, et al.,
2011
, “
Devices to Improve Colon Polyp Detection
,”
Gastrointest. Endosc.
,
73
(
6
), pp.
1092
1097
.10.1016/j.gie.2011.01.062
25.
Weitschies
,
W.
,
Müller
,
L.
,
Grimm
,
M.
, and
Koziolek
,
M.
,
2021
, “
Ingestible Devices for Studying the Gastrointestinal Physiology and Their Application in Oral Biopharmaceutics
,”
Adv. Drug Deliv. Rev.
,
176
, p.
113853
.10.1016/j.addr.2021.113853
26.
Nia
,
G. J.
,
Selnes
,
O.
,
Valdivia
,
P. C.
, and
Koulaouzidis
,
A.
,
2024
, “
An overview of emerging smart capsules using other-than-light technologies for colonic disease detection
,”
Ther. Adv. Gastroenterol.
, 17, pp.
1
13
.10.1177/17562848241255298
27.
Mau
,
M. M.
,
Sarker
,
S.
,
Harris
,
S. P.
, and
Terry
,
B.
,
2023
, “
Design and Testing of a Superelastic Nitinol Tissue Attachment Mechanism for Long-Term Gastrointestinal Device Retention
,”
ASME J. Med. Devices
,
17
(
2
), p.
021005
.10.1115/1.4057058
28.
Sarker
,
S.
,
Wankum
,
B.
,
Shimizu
,
J.
,
Jones
,
R.
, and
Terry
,
B.
,
2022
, “
A Factorial Approach for Optimizing the Design Parameters of a Tissue Attachment Mechanism for Drug Delivery
,”
IEEE Trans. Biomed. Eng.
,
69
(
1
), pp.
32
41
.10.1109/TBME.2021.3086975
29.
Sarker
,
S.
,
Jones
,
R.
,
Chow
,
G.
, and
Terry
,
B.
, May
2021
, “
Design of a Soft, Self-Uncoiling Stent for Extended Retention of Drug Delivery in the Small Intestine
,”
ASME
Paper No. DMD2021-1063.10.1115/DMD2021-1063
30.
Barducci
,
L.
,
Norton
,
J. C.
,
Sarker
,
S.
,
Mohammed
,
S.
,
Jones
,
R.
,
Valdastri
,
P.
, and
Terry
,
B. S.
,
2020
, “
Fundamentals of the Gut for Capsule Engineers
,”
Prog. Biomed. Eng.
,
2
(
4
), p.
042002
.10.1088/2516-1091/abab4c
You do not currently have access to this content.