Abstract

Is it possible to distinguish cells with minimally invasive methods according to the characteristics of cells when moving through flow paths in vitro? A microflow-channel with microgrooves 45 deg diagonal to the mainstream direction has been manufactured by photolithography technology. The flow path between the two transparent polydimethylsiloxane disks (0.05 mm high, 1 mm wide, and 25 mm long) has rectangular microgrooves (4.5 μm deep, 0.2 mm long) at the bottom with variations in groove widths (0.03 mm, 0.04 mm, and 0.05 mm). Deformation and orientation of floating mouse-myoblasts (C2C12) during passage over the microgrooves were measured. Experimental results show that the larger the shape change of the two-dimensional projected image in the groove, the smaller the angle change tends to be. This method may be applicable to classification by cell deformation.

References

1.
Hashimoto
,
S.
,
2020
, “
Applications of Polydimethylsiloxane: Microstructure of Functional Surface for Observation of Biological Cell Behavior
,”
Polydimethylsiloxane: Structure and Applications
,
P. N.
Carlsen
, ed.,
Nova Science Publishers
,
New York
, Chap. 2, pp.
29
94
.
2.
Wang
,
X.
,
Chen
,
S.
,
Kong
,
M.
,
Wang
,
Z.
,
Costa
,
K. D.
,
Li
,
R. A.
, and
Sun
,
D.
,
2011
, “
Enhanced Cell Sorting and Manipulation With Combined Optical Tweezer and Microfluidic Chip Technologies
,”
Lab Chip
,
11
(
21
), pp.
3656
3662
.10.1039/c1lc20653b
3.
Yoon
,
Y.
,
Lee
,
J.
,
Ra
,
M.
,
Gwon
,
H.
,
Lee
,
S.
,
Kim
,
M. Y.
,
Yoo
,
K. C.
,
Sul
,
O.
,
Kim
,
C. G.
,
Kim
,
W. Y.
,
Park
,
J. G.
,
Lee
,
S. J.
,
Lee
,
Y. Y.
,
Choi
,
H. S.
, and
Lee
,
S. B.
,
2019
, “
Continuous Separation of Circulating Tumor Cells From Whole Blood Using a Slanted Weir Microfluidic Device
,”
Cancers
,
11
(
2
), p.
200
.10.3390/cancers11020200
4.
Gossett
,
D. R.
,
Weaver
,
W. M.
,
Mach
,
A. J.
,
Hur
,
S. C.
,
Tse
,
H. T. K.
,
Lee
,
W.
,
Amini
,
H.
, and
Di Carlo
,
D.
,
2010
, “
Label-Free Cell Separation and Sorting in Microfluidic Systems
,”
Anal. Bioanal. Chem.
,
397
(
8
), pp.
3249
3267
.10.1007/s00216-010-3721-9
5.
Xing
,
X.
,
Chan
,
M. L.
,
Roshan
,
K. A.
, and
Yobas
,
L.
,
2017
, “
Dielectrophoretic Cell Sorting Via Sliding Cells on 3D Silicon Microelectrodes
,”
IEEE 30th International Conference on Micro Electro Mechanical Systems
(
MEMS
), Las Vegas, NV, Jan. 22–26, pp.
147
150
.10.1109/MEMSYS.2017.7863362
6.
Lin
,
S.
,
Zhi
,
X.
,
Chen
,
D.
,
Xia
,
F.
,
Shen
,
Y.
,
Niu
,
J.
,
Huang
,
S.
,
Song
,
J.
,
Miao
,
J.
,
Cui
,
D.
, and
Ding
,
X.
,
2019
, “
A Flyover Style Microfluidic Chip for Highly Purified Magnetic Cell Separation
,”
Biosens. Bioelectron.
,
129
, pp.
175
181
.10.1016/j.bios.2018.12.058
7.
Leclerc
,
A.
,
Tremblay
,
D.
,
Hadjiantoniou
,
S.
,
Bukoreshtliev
,
N. V.
,
Rogowski
,
J. L.
,
Godin
,
M.
, and
Pelling
,
A. E.
,
2013
, “
Three-Dimensional Spatial Separation of Cells in Response to Microtopography
,”
Biomaterials
,
34
(
33
), pp.
8097
8104
.10.1016/j.biomaterials.2013.07.047
8.
Liu
,
Z.
,
Huang
,
F.
,
Du
,
J.
,
Shu
,
W.
,
Feng
,
H.
,
Xu
,
X.
, and
Chen
,
Y.
,
2013
, “
Rapid Isolation of Cancer Cells Using Microfluidic Deterministic Lateral Displacement Structure
,”
Biomicrofluidics
,
7
(
1
), p.
011801
.10.1063/1.4774308
9.
Mutafopulos
,
K.
,
Spink
,
P.
,
Lofstrom
,
C. D.
,
Lu
,
P. J.
,
Lu
,
H.
,
Sharpe
,
J. C.
,
Franke
,
T.
, and
Weitz
,
D. A.
,
2019
, “
Traveling Surface Acoustic Wave (TSAW) Microfluidic Fluorescence Activated Cell Sorter (μFACS)
,”
Lab Chip
,
19
(
14
), pp.
2435
2443
.10.1039/C9LC00163H
10.
Carey
,
T. R.
,
Cotner
,
K. L.
,
Li
,
B.
, and
Sohn
,
L. L.
,
2019
, “
Developments in Label-Free Microfluidic Methods for Single-Cell Analysis and Sorting
,”
WIREs Nanomed. Nanobiotechnol.
,
11
(
1
), p.
e1529
.10.1002/wnan.1529
11.
Yamada
,
M.
,
Seko
,
W.
,
Yanai
,
T.
,
Ninomiya
,
K.
, and
Seki
,
M.
,
2017
, “
Slanted, Asymmetric Microfluidic Lattices as Size-Selective Sieves for Continuous Particle/Cell Sorting
,”
Lab Chip
,
17
(
2
), pp.
304
314
.10.1039/C6LC01237J
12.
Zhang
,
Z.
,
Chien
,
W.
,
Henry
,
E.
,
Fedosov
,
D. A.
, and
Gompper
,
G.
,
2019
, “
Sharp-Edged Geometric Obstacles in Microfluidics Promote Deformability-Based Sorting of Cells
,”
Phys. Rev. Fluids
,
4
(
2
), p.
024201
.10.1103/PhysRevFluids.4.024201
13.
Zheng
,
Y.
,
Nguyen
,
J.
,
Wei
,
Y.
, and
Sun
,
Y.
,
2013
, “
Recent Advances in Microfluidic Techniques for Single-Cell Biophysical Characterization
,”
Lab Chip
,
13
(
13
), pp.
2464
2483
.10.1039/c3lc50355k
14.
Hashimoto
,
S.
,
Matsumoto
,
T.
, and
Uehara
,
S.
,
2021
, “
How Does a Cell Change Flow Direction Due to a Micro Groove?
,”
J. Syst., Cybern. Inf.
,
19
(
8
), pp.
164
181
.10.54808/JSCI.19.08.164
15.
Takahashi
,
Y.
,
Hashimoto
,
S.
, and
Hino
,
H.
,
2015
, “
Micro Groove for Trapping of Flowing Cell
,”
J. Syst., Cybern. Inf.
,
13
(
3
), pp.
1
8
.http://www.iiisci.org/journal/PDV/sci/pdfs/BA470WG15.pdf
16.
Hashimoto
,
S.
,
2020
, “
Oblique Micro Grooves on Bottom Wall of Flow Channel to Sort Cells
,”
ASME
Paper No. FEDSM2020-20096.10.1115/FEDSM2020-20096
17.
Kim
,
J.
,
Lee
,
H. Y.
, and
Shin
,
S.
,
2015
, “
Advances in the Measurement of Red Blood Cell Deformability: A Brief Review
,”
J. Cell. Biotechnol.
,
1
(
1
), pp.
63
79
.10.3233/JCB-15007
18.
Hashimoto
,
S.
,
2022
, “
Cell Behavior in Flow Passing Through Micro Machined Gap
,”
ASME J. Eng. Sci. Med. Diagn. Ther.
,
5
(
4
), p.
041001
.10.1115/1.4054261
19.
Hashimoto
,
S.
,
Matsumoto
,
T.
,
Uehara
,
S.
, and
Endo
,
Y.
,
2022
, “
Bumping Movement of Cell Flowing Over Oblique Micro-Groove: Comparison With Movement Outside Groove
,” Proceedings of the 13th International Multi-Conference on Complexity, Informatics and Cybernetics (
IMCIC 2022
),
N.
Callaos
,
S.
Hashimoto
,
N.
Lace
,
B.
Sánchez
,
M.
Savoie
, eds., Vol.
2
, Orlando, FL, Mar. 8–11,
International Institute of Informatics and Systemics
, pp.
23
28
.10.54808/IMCIC2022.02.23
You do not currently have access to this content.