Abstract

The design and operation of lab-on-a-chip systems that are based on electrical circuits require fluids that are propelled by thermo-electrokinetic forces. On-chip operations including the generation of heat along microchannels and the control of liquid flow are all relevant in the traditional sense. The influence of heat on pseudoplastic fluid flow is demonstrated in this work using electro-osmotic (EOF) peristaltic pumping. The fundamental heat-transport equations that govern microchannel applications are developed from theoretical considerations. Explicit equations are presented for pressure gradient, stream functions, heat transfer coefficient, and temperature distribution when long wavelength and low Reynolds numbers are taken into account. Analytical solutions employ a regular perturbation approach. Then, mathematica software is used to solve the resulting equation. Physical quantities are analyzed using a variety of parameters. The results are visibly presented for each parameter at the end.

References

1.
Reuss
,
F. F.
,
1809
, “
Charge Induced Flow
,”
Proc. Imper. Soc. Nat. Moscow
,
2
, pp.
327
344
.https://cir.nii.ac.jp/crid/1571135650339604608
2.
Helmholtz
,
H. V.
,
1879
, “
Studien Über Electrische Grenzschichten
,”
Ann. Phys.
,
243
, pp.
337
382
.10.1002/andp.18792430702
3.
Smoluchowski
,
M. V.
,
1905
, “
Zur Theorie Der Elektrischen Tataphorese Under Oberflaechenleitung
,”
Phys. Z
,
6
, p.
529
.10.1002/bbpc.192400182
4.
Polson
,
N. A.
, and
Hayes
,
M. A.
,
2000
, “
Electroosmotic Flow Control of Fluids on a Capillary Electrophoresis Microdevice Using an Applied External Voltage
,”
Anal. Chem.
,
72
, pp.
1088
1092
.10.1021/ac9912698
5.
Dutta
,
P.
, and
Beskok
,
A.
,
2001
, “
Analytical Solution of Combined Electroosmotic/Pressure Driven Flows in Two-Dimensional Straight Channels: Finite Debye Layer Effects
,”
Anal. Chem.
,
73
, pp.
1979
1986
.10.1021/ac001182i
6.
Burgreen
,
D.
, and
Nakache
,
F. R.
,
1964
, “
Electrokinetic Flow in an Ultrafine Capillary Slits
,”
J. Phys. Chem.
,
68
, pp.
1084
1091
.10.1021/j100787a019
7.
Kang
,
Y.
,
Yang
,
C.
, and
Huang
,
X.
,
2002
, “
Dynamic Aspects of Electroosmotic Flow in a Cylindrical Microcapillary
,”
Int. J. Eng. Sci.
,
40
, pp.
2203
2221
.10.1016/S0020-7225(02)00143-X
8.
Wang
,
L.
,
Liu
,
S.
,
Wang
,
Y.
, and
Xue
,
C.
,
2018
, “
Numerical Model for Electroosmotic Drainage in Unsaturated Soils
,”
The International Congress on Environmental Geotechnics
,
Hangzhou, China
,
Oct. 28–Nov. 1
, pp.
164
171
.
9.
Sung
,
W. S.
, and
Oh
,
S. Y.
,
2018
, “
Electroosmotic Flow Through Skin: Effect of Current Duration and Poly (Ethylene Imine)
,”
J. Pharm. Invest.
,
48
(
3
), pp.
373
379
.10.1007/s40005-017-0333-9
10.
Dutta
,
D.
,
Russell
,
C.
,
Kim
,
J.
, and
Chandra
,
S.
,
2018
, “
Differential Mobility of Breast Cancer Cells and Normal Breast Epithelial Cells Under DC Electrophoresis and Electroosmosis
,”
Anticancer Res.
,
38
(
10
), pp.
5733
5738
.10.21873/anticanres.12911
11.
Su
,
J.
,
Jian
,
Y.
, and
Chang
,
L.
,
2012
, “
Thermally Fully Developed Electroosmotic Flow Through a Rectangular Microchannel
,”
Int. J. Heat Mass Transfer
,
55
, pp.
6285
6290
.10.1016/j.ijheatmasstransfer.2012.05.056
12.
Maynes
,
D.
, and
Webb
,
B. W.
,
2003
, “
Fully Developed Electroosmotic Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
46
, pp.
1359
1369
.10.1016/S0017-9310(02)00423-4
13.
Jhorar
,
R.
,
Tripathi
,
D.
,
Bhatti
,
M. M.
, and
Ellahi
,
R.
,
2018
, “
Electroosmosis Modulated Biomechanical Transport Through Asymmetric Microfluidics Channel
,”
Indian J. Phys.
,
1
, p.
10
.10.1007/s12648-018-1215-3
14.
Latham
,
T. W.
,
1966
, “
Fluid Motion in a Peristaltic Pump
,” M.S. thesis,
MIT
,
Cambridge, MA
.
15.
Burns
,
J. C.
, and
Parkes
,
T.
,
1967
, “
Peristaltic Motion
,”
J. Fluid Mech.
,
29
(
4
), pp.
731
743
.10.1017/S0022112067001156
16.
Shapiro
,
A. H.
,
1967
, “
Pumping and Retrograde Diffusion in Peristaltic Waves in
,”
Proceedings of the Workshop in Ureteral Reflux and Children
,
Washington, DC
, p.
109
.
17.
El Misery
,
A. M.
,
Elshehawey
,
E. F.
, and
Hakeem
,
A. A.
,
1996
, “
Peristaltic Motion of an Incompressible Generalized Newtonian Fluid in a Planar Channel
,”
J. Phys. Soc. Jpn.
,
65
, pp.
3524
3529
.10.1143/JPSJ.65.3524
18.
Rao
,
A. R.
, and
Mishra
,
M.
,
2004
, “
Peristaltic Transport of a Power Law Fluid in a Porous Tube
,”
J. Non Newtonian Fluid Mech.
,
121
, pp.
163
174
.10.1016/j.jnnfm.2004.06.006
19.
Hakeem
,
A. E.
,
Naby
,
A. E.
,
Misery
,
A. E.
, and
Kareem
,
A. E.
,
2006
, “
Effects of a Magnetic Field on Trapping Through Peristaltic Motion for Generalized Newtonian Fluid in Channel
,”
Phys. A
,
367
, pp.
79
92
.10.1016/j.physa.2005.10.045
20.
Reddy
,
S.
,
Mishra
,
M. V.
,
Sreenadh
,
M.
, and
Rao
,
R.
,
2005
, “
Influence of Lateral Walls on Peristaltic Pumping in a Rectangular Duct
,”
ASME J. Fluids Eng.
,
127
(4), pp.
824
827
.10.1115/1.1994876
21.
K.
Vajravelu
,
S.
Sreenadh
, and
P.
Lakshminarayana
,
2011
, “
The Influence of Heat Transfer on Peristaltic Transport of a Jeffrey Fluid in a Vertical Porous Stratum
,”
Commun. Nonlinear Sci. Numer. Simul
,
16
, pp.
3107
3125
.10.1016/j.cnsns.2010.11.001
22.
Pandey
,
S. K.
, and
Chaube
,
M. K.
,
2010
, “
Peristaltic Transport of a Visco-Elastic Fluid in a Tube of Non Uniform Cross Section
,”
Math. Comput. Modell.
,
52
(
261
), pp.
501
514
.10.1016/j.mcm.2010.03.047
23.
Noreen
,
S.
,
2016
, “
Effects of Joule Heating and Convective Boundary Conditions on Magnetohydrodynamic Peristaltic Flow of Couple-Stress Fluid
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
138
(
9
), p.
094502
.10.1115/1.4033419
24.
Tripathi
,
D.
,
2011
, “
Peristaltic Transport of a Viscoelastic Fluid in a Channel
,”
Acta Astronaut.
,
6
, pp.
1379
1385
.10.1016/j.actaastro.2010.09.012
25.
Hayat
,
T.
,
Noreen
,
S.
,
Alhothuami
,
M. S.
,
Asghar
,
S.
, and
Alhomaidan
,
A.
,
2012
, “
Peristaltic Flow Under the Effects of an Induced Magnetic Field and Heat and Mass Transfer
,”
Int. J. Heat Mass Tranfer
,
55
, pp.
443
452
.10.1016/j.ijheatmasstransfer.2011.09.044
26.
Prakash
,
J.
,
Sharma
,
A.
, and
Tripathi
,
D.
,
2018
, “
Thermal Radiation Effects on Electroosmosis Modulated Peristaltic Transport of Ionic Nanoliquids in Biomicrofluidics Channel
,”
J. Mol. Liq.
,
249
, pp.
843
855
.10.1016/j.molliq.2017.11.064
27.
Shit
,
G. C.
,
Mondal
,
A.
,
Sinha
,
A.
, and
Kundu
,
P. K.
,
2016
, “
Electro-Osmotic Flow of Power-Law Fluid and Heat Transfer in a Micro-Channel With Effects of Joule Heating and Thermal Radiation
,”
Phys. A Stat. Mech. Appl.
,
462
, pp.
1040
1057
.10.1016/j.physa.2016.06.142
28.
Chakraborty
,
S.
,
2006
, “
Augmentation of Peristaltic Microflows Through Electro-Osmotic Mechanisms
,”
J. Phys. D Appl. Phys.
,
39
, p.
5356
.10.1088/0022-3727/39/24/037
29.
Tripathi
,
D.
,
Jhorar
,
R.
,
Bég
,
O. A.
, and
Shaw
,
S.
,
2018
, “
Electroosmosis Modulated Peristaltic Biorheological Flow Through an Asymmetric Microchannel: Mathematical Model
,”
Meccanica
,
53
, pp.
2079
2090
.10.1007/s11012-017-0795-x
30.
Waheed
,
S.
,
Noreen
,
S.
, and
Hussanan
,
S.
,
2019
, “
A. Study of Heat and Mass Transfer in Electroosmotic Flow of Third Order Fluid Through Peristaltic Microchannels
,”
Appl. Sci.
,
9
, p.
2164
.10.3390/app9102164
31.
Noreen
,
S.
, and
Tripathi
,
D.
,
2019
, “
Heat Transfer Analysis on Electroosmotic Flow Via Peristaltic Pumping in non-Darcy Porous Medium
,”
Therm. Sci. Eng. Prog.
,
11
, pp.
254
262
.10.1016/j.tsep.2019.03.015
32.
Bandopadhyay
,
A.
,
Tripathi
,
D.
, and
Chakraborty
,
S.
,
2016
, “
Electroosmosis Modulated Peristaltic Transport in Microfluidic Channels
,”
Phys. Fluids
,
28
, p.
052002
.10.1063/1.4947115
33.
Ramesh
,
K.
, and
Prakash
,
J.
,
2018
, “
Thermal Analysis for Heat Transfer Enhancement in Electroosmosis-Modulated Peristaltic Transport of Sutter by Nanofluids in a Microfluidic Vessel
,”
J. Therm. Anal. Calorim.
, pp.
1
16
.
34.
Jayavel
,
P.
,
Jhorar
,
R.
,
Tripathi
,
D.
, and
Azese
,
M. N.
,
2019
, “
Electroosmotic Flow of Pseudoplastic Nanoliquids Via Peristaltic Pumping
,”
J. Braz. Soc. Mech. Sci. Eng.
,
41
, p.
61
.10.1007/s40430-018-1555-0
35.
Noreen
,
S.
,
Waheed
,
S.
,
Lu
,
D. C.
, and
Hussanan
,
A.
,
2020
, “
Heat Measures in Performance of Electro-Osmotic Flow of Williamson Fluid in Micro-Channel
,”
Alexandria Eng. J.
,
59
(
6
), pp.
4081
4100
.10.1016/j.aej.2020.07.013
36.
Noreen
,
S.
,
Alsaedi
,
A.
, and
Hayat
,
T.
,
2012
, “
Peristaltic Flow of Pseudoplastic Fluid in an Asymmetric Channel
,”
ASME J. Appl. Mech.
,
79
, p.
054501
.10.1115/1.4006259
You do not currently have access to this content.