The paper provides an overview of high-resolution electrohydrodynamic (EHD) printing processes for general applications in high-precision micro/nanoscale fabrication and manufacturing. Compared with other printing approaches, EHD printing offers many unique advantages and opportunities in the printing resolution, tunable printing modes, and wide material applicability, which has been successfully applied in numerous applications that include additive manufacturing, printed electronics, biomedical sensors and devices, and optical and photonic devices. In this review, the EHDs-based printing mechanism and the resulting printing modes are described, from which various EHD printing processes were developed. The material applicability and ink printability are discussed to establish the critical factors of the printable inks in EHD printing. A number of EHD printing processes and printing systems that are suitable for micro/nanomanufacturing applications are described in this paper. The recent progresses, opportunities, and challenges of EHD printing are reviewed for a range of potential application areas.

References

1.
Madou
,
M. J.
,
2002
,
Fundamentals of Microfabrication: The Science of Miniaturization
,
CRC Press
,
Boca Raton, FL
.
2.
Stepanova
,
M.
, and
Dew
,
S.
,
2011
,
Nanofabrication: Techniques and Principles
,
Springer Science & Business Media
,
New York
.
3.
Robinson
,
G.
, and
Jackson
,
M.
,
2005
, “
A Review of Micro and Nanomachining From a Materials Perspective
,”
J. Mater. Process. Technol.
,
167
(
2–3
), pp.
316
337
.
4.
Dornfeld
,
D.
,
Min
,
S.
, and
Takeuchi
,
Y.
,
2006
, “
Recent Advances in Mechanical Micromachining
,”
CIRP Ann.-Manuf. Technol.
,
55
(
2
), pp.
745
768
.
5.
Cheng
,
J.
,
Liu
,
C.-S.
,
Shang
,
S.
,
Liu
,
D.
,
Perrie
,
W.
,
Dearden
,
G.
, and
Watkins
,
K.
,
2013
, “
A Review of Ultrafast Laser Materials Micromachining
,”
Opt. Laser Technol.
,
46
, pp.
88
102
.
6.
Hutchings
,
I. M.
, and
Martin
,
G. D.
,
2012
,
Inkjet Technology for Digital Fabrication
,
Wiley
,
Hoboken, NJ
.
7.
Hoath
,
S. D.
,
2016
,
Fundamentals of Inkjet Printing: The Science of Inkjet and Droplets
,
Wiley
,
Hoboken, NJ
.
8.
Sirringhaus
,
H.
,
Kawase
,
T.
,
Friend
,
R.
,
Shimoda
,
T.
,
Inbasekaran
,
M.
,
Wu
,
W.
, and
Woo
,
E.
,
2000
, “
High-Resolution Inkjet Printing of All-Polymer Transistor Circuits
,”
Science
,
290
(
5499
), pp.
2123
2126
.
9.
De Gans
,
B. J.
,
Duineveld
,
P. C.
, and
Schubert
,
U. S.
,
2004
, “
Inkjet Printing of Polymers: State of the Art and Future Developments
,”
Adv. Mater.
,
16
(
3
), pp.
203
213
.
10.
Singh
,
M.
,
Haverinen
,
H. M.
,
Dhagat
,
P.
, and
Jabbour
,
G. E.
,
2010
, “
Inkjet Printing—Process and Its Applications
,”
Adv. Mater.
,
22
(
6
), pp.
673
685
.
11.
Basaran
,
O. A.
,
Gao
,
H.
, and
Bhat
,
P. P.
,
2013
, “
Nonstandard Inkjets
,”
Annu. Rev. Fluid Mech.
,
45
(
1
), pp.
85
113
.
12.
Percin
,
G.
, and
Khuri-Yakub
,
B. T.
,
2002
, “
Piezoelectrically Actuated Flextensional Micromachined Ultrasound Droplet Ejectors
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
49
(
6
), pp.
756
766
.
13.
Hyun
,
W. J.
,
Secor
,
E. B.
,
Hersam
,
M. C.
,
Frisbie
,
C. D.
, and
Francis
,
L. F.
,
2015
, “
High‐Resolution Patterning of Graphene by Screen Printing With a Silicon Stencil for Highly Flexible Printed Electronics
,”
Adv. Mater.
,
27
(
1
), pp.
109
115
.
14.
Dungchai
,
W.
,
Chailapakul
,
O.
, and
Henry
,
C. S.
,
2011
, “
A Low-Cost, Simple, and Rapid Fabrication Method for Paper-Based Microfluidics Using Wax Screen-Printing
,”
Analyst
,
136
(
1
), pp.
77
82
.
15.
Hyun
,
W. J.
,
Lim
,
S.
,
Ahn
,
B. Y.
,
Lewis
,
J. A.
,
Frisbie
,
C. D.
, and
Francis
,
L. F.
,
2015
, “
Screen Printing of Highly Loaded Silver Inks on Plastic Substrates Using Silicon Stencils
,”
ACS Appl. Mater. Interfaces
,
7
(
23
), pp.
12619
12624
.
16.
Khan
,
S.
,
Lorenzelli
,
L.
, and
Dahiya
,
R.
,
2014
, “
Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review
,”
IEEE Sens. J.
,
15
(
6
), pp.
3164
3185
.
17.
Park
,
J.-U.
,
Hardy
,
M.
,
Kang
,
S. J.
,
Barton
,
K.
,
Adair
,
K.
,
Kishore Mukhopadhyay
,
D.
,
Lee
,
C. Y.
,
Strano
,
M. S.
,
Alleyne
,
A. G.
, and
Georgiadis
,
J. G.
,
2007
, “
High-Resolution Electrohydrodynamic Jet Printing
,”
Nat. Mater.
,
6
(
10
), pp.
782
789
.
18.
Onses
,
M. S.
,
Sutanto
,
E.
,
Ferreira
,
P. M.
,
Alleyne
,
A. G.
, and
Rogers
,
J. A.
,
2015
, “
Mechanisms, Capabilities, and Applications of High‐Resolution Electrohydrodynamic Jet Printing
,”
Small
,
11
(
34
), pp.
4237
4266
.
19.
Lee
,
A.
,
Jin
,
H.
,
Dang
,
H.-W.
,
Choi
,
K.-H.
, and
Ahn
,
K. H.
,
2013
, “
Optimization of Experimental Parameters to Determine the Jetting Regimes in Electrohydrodynamic Printing
,”
Langmuir
,
29
(
44
), pp.
13630
13639
.
20.
Zeleny
,
J.
,
1917
, “
Instability of Electrified Liquid Surfaces
,”
Phys. Rev.
,
10
(
1
), pp.
1
6
.
21.
Cloupeau
,
M.
, and
Prunet-Foch
,
B.
,
1994
, “
Electrohydrodynamic Spraying Functioning Modes: A Critical Review
,”
J. Aerosol Sci.
,
25
(
6
), pp.
1021
1036
.
22.
Fenn
,
J. B.
,
Mann
,
M.
,
Meng
,
C. K.
,
Wong
,
S. F.
, and
Whitehouse
,
C. M.
,
1990
, “
Electrospray Ionization–Principles and Practice
,”
Mass Spectrom. Rev.
,
9
(
1
), pp.
37
70
.
23.
Jaworek
,
A.
, and
Krupa
,
A.
,
1999
, “
Jet and Drops Formation in Electrohydrodynamic Spraying of Liquids. A Systematic Approach
,”
Exp. Fluids
,
27
(
1
), pp.
43
52
.
24.
Sill
,
T. J.
, and
von Recum
,
H. A.
,
2008
, “
Electrospinning: Applications in Drug Delivery and Tissue Engineering
,”
Biomaterials
,
29
(
13
), pp.
1989
2006
.
25.
Gries
,
K.
,
Vieker
,
H.
,
Gölzhäuser
,
A.
,
Agarwal
,
S.
, and
Greiner
,
A.
,
2012
, “
Preparation of Continuous Gold Nanowires by Electrospinning of High-Concentration Aqueous Dispersions of Gold Nanoparticles
,”
Small
,
8
(
9
), pp.
1436
1441
.
26.
Dalton
,
P. D.
,
Joergensen
,
N. T.
,
Groll
,
J.
, and
Moeller
,
M.
,
2008
, “
Patterned Melt Electrospun Substrates for Tissue Engineering
,”
Biomed. Mater.
,
3
(
3
), p.
034109
.
27.
Sun
,
D.
,
Chang
,
C.
,
Li
,
S.
, and
Lin
,
L.
,
2006
, “
Near-Field Electrospinning
,”
Nano Lett.
,
6
(
4
), pp.
839
842
.
28.
Jaworek
,
A.
, and
Krupa
,
A.
,
1999
, “
Classification of the Modes of EHD Spraying
,”
J. Aerosol Sci.
,
30
(
7
), pp.
873
893
.
29.
Jaworek
,
A.
, and
Krupa
,
A.
, 1998, “
Main Modes of Electrohydrodynamic Spraying of Liquids
,”
Third International Conference on Multiphase Flow
(
ICMF
), Lyon, France, June 8–12, pp.
8
12
.https://www.imp.gda.pl/fileadmin/old_imp/ehd/lyon-98s.pdf
30.
Cloupeau
,
M.
, and
Prunet-Foch
,
B.
,
1990
, “
Electrostatic Spraying of Liquids: Main Functioning Modes
,”
J. Electrost.
,
25
(
2
), pp.
165
184
.
31.
Noymer
,
P. D.
, and
Garel
,
M.
,
2000
, “
Stability and Atomization Characteristics of Electrohydrodynamic Jets in the Cone-Jet and Multi-Jet Modes
,”
J. Aerosol Sci.
,
31
(
10
), pp.
1165
1172
.
32.
Hayati
,
I.
,
Bailey
,
A.
, and
Tadros
,
T. F.
,
1987
, “
Investigations Into the Mechanism of Electrohydrodynamic Spraying of Liquids—Part II: Mechanism of Stable Jet Formation and Electrical Forces Acting on a Liquid Cone
,”
J. Colloid Interface Sci.
,
117
(
1
), pp.
222
230
.
33.
Hayati
,
I.
,
Bailey
,
A.
, and
Tadros
,
T. F.
,
1987
, “
Investigations Into the Mechanisms of Electrohydrodynamic Spraying of Liquids—Part I: Effect of Electric Field and the Environment on Pendant Drops and Factors Affecting the Formation of Stable Jets and Atomization
,”
J. Colloid Interface Sci.
,
117
(
1
), pp.
205
221
.
34.
Scheideler
,
W. J.
, and
Chen
,
C.-H.
,
2014
, “
The Minimum Flow Rate Scaling of Taylor Cone-Jets Issued From a Nozzle
,”
Appl. Phys. Lett.
,
104
(
2
), p.
024103
.
35.
Jayasinghe
,
S.
, and
Edirisinghe
,
M.
,
2004
, “
Electric-Field Driven Jetting From Dielectric Liquids
,”
Appl. Phys. Lett.
,
85
(
18
), pp.
4243
4245
.
36.
Marginean
,
I.
,
Nemes
,
P.
,
Parvin
,
L.
, and
Vertes
,
A.
,
2006
, “
How Much Charge is There on a Pulsating Taylor Cone?
,”
Appl. Phys. Lett.
,
89
(
6
), p.
064104
.
37.
Zhang
,
X.
, and
Basaran
,
O. A.
,
1996
, “
Dynamics of Drop Formation From a Capillary in the Presence of an Electric Field
,”
J. Fluid Mech.
,
326
(
1
), pp.
239
263
.
38.
Lee
,
M. W.
,
Kim
,
N. Y.
, and
Yoon
,
S. S.
,
2013
, “
On Pinchoff Behavior of Electrified Droplets
,”
J. Aerosol Sci.
,
57
, pp.
114
124
.
39.
Hartman
,
R.
,
Brunner
,
D.
,
Camelot
,
D.
,
Marijnissen
,
J.
, and
Scarlett
,
B.
,
2000
, “
Jet Break-Up in Electrohydrodynamic Atomization in the Cone-Jet Mode
,”
J. Aerosol Sci.
,
31
(
1
), pp.
65
95
.
40.
Hartman
,
R.
,
Brunner
,
D.
,
Camelot
,
D.
,
Marijnissen
,
J.
, and
Scarlett
,
B.
,
1999
, “
Electrohydrodynamic Atomization in the Cone–Jet Mode Physical Modeling of the Liquid Cone and Jet
,”
J. Aerosol Sci.
,
30
(
7
), pp.
823
849
.
41.
Hartman
,
R.
,
Marijnissen
,
J.
, and
Scarlett
,
B.
,
1997
, “
Electro Hydrodynamic Atomization in the Cone-Jet Mode. A Physical Model of the Liquid Cone and Jet
,”
J. Aerosol Sci.
,
1001
(
28
), pp.
S527
S528
.
42.
Lee
,
M.
,
Kang
,
D.
,
Kim
,
N.
,
Kim
,
H.
,
James
,
S.
, and
Yoon
,
S.
,
2012
, “
A Study of Ejection Modes for Pulsed-DC Electrohydrodynamic Inkjet Printing
,”
J. Aerosol Sci.
,
46
, pp.
1
6
.
43.
Stachewicz
,
U.
,
Yurteri
,
C. U.
,
Marijnissen
,
J. C.
, and
Dijksman
,
J. F.
,
2009
, “
Stability Regime of Pulse Frequency for Single Event Electrospraying
,”
Appl. Phys. Lett.
,
95
(
22
), p.
224105
.
44.
Bober
,
D. B.
, and
Chen
,
C.-H.
,
2011
, “
Pulsating Electrohydrodynamic Cone-Jets: From Choked Jet to Oscillating Cone
,”
J. Fluid Mech.
,
689
, pp.
552
563
.
45.
Marginean
,
I.
,
Parvin
,
L.
,
Heffernan
,
L.
, and
Vertes
,
A.
,
2004
, “
Flexing the Electrified Meniscus: The Birth of a Jet in Electrosprays
,”
Anal. Chem.
,
76
(
14
), pp.
4202
4207
.
46.
Choi
,
H. K.
,
Park
,
J.-U.
,
Park
,
O. O.
,
Ferreira
,
P. M.
,
Georgiadis
,
J. G.
, and
Rogers
,
J. A.
,
2008
, “
Scaling Laws for Jet Pulsations Associated With High-Resolution Electrohydrodynamic Printing
,”
Appl. Phys. Lett.
,
92
(
12
), p.
123109
.
47.
Song
,
C.
,
Rogers
,
J. A.
,
Kim
,
J.-M.
, and
Ahn
,
H.
,
2015
, “
Patterned Polydiacetylene-Embedded Polystyrene Nanofibers Based on Electrohydrodynamic Jet Printing
,”
Macromol. Res.
,
23
(
1
), pp.
118
123
.
48.
Fernández de La Mora
,
J.
,
2007
, “
The Fluid Dynamics of Taylor Cones
,”
Annu. Rev. Fluid Mech.
,
39
(
1
), pp.
217
243
.
49.
Mestel
,
A.
,
1996
, “
Electrohydrodynamic Stability of a Highly Viscous Jet
,”
J. Fluid Mech.
,
312
(
1
), pp.
311
326
.
50.
Kim
,
H. J.
, and
Um
,
I. C.
,
2014
, “
Relationship Between Rheology and Electro-Spinning Performance of Regenerated Silk Fibroin Prepared Using Different Degumming Methods
,”
Korea-Aust. Rheol. J.
,
26
(
2
), pp.
119
125
.
51.
Lee
,
S.-H.
,
Nguyen
,
X. H.
, and
Ko
,
H. S.
,
2012
, “
Study on Droplet Formation With Surface Tension for Electrohydrodynamic Inkjet Nozzle
,”
J. Mech. Sci. Technol.
,
26
(
5
), pp.
1403
1408
.
52.
Barrero
,
A.
,
Ganan-Calvo
,
A.
,
Davila
,
J.
,
Palacios
,
A.
, and
Gomez-Gonzalez
,
E.
,
1999
, “
The Role of the Electrical Conductivity and Viscosity on the Motions Inside Taylor Cones
,”
J. Electrost.
,
47
(
1–2
), pp.
13
26
.
53.
Yu
,
M.
,
Ahn
,
K. H.
, and
Lee
,
S. J.
,
2016
, “
Design Optimization of Ink in Electrohydrodynamic Jet Printing: Effect of Viscoelasticity on the Formation of Taylor Cone Jet
,”
Mater. Des.
,
89
, pp.
109
115
.
54.
Bae
,
J.
,
Lee
,
J.
, and
Hyun Kim
,
S.
,
2017
, “
Effects of Polymer Properties on Jetting Performance of Electrohydrodynamic Printing
,”
J. Appl. Polym. Sci.
,
134
(
35
), p.
45044
.
55.
Park
,
J.
, and
Hwang
,
J.
,
2014
, “
Fabrication of a Flexible Ag-Grid Transparent Electrode Using ac Based Electrohydrodynamic Jet Printing
,”
J. Phys. D: Appl. Phys.
,
47
(
40
), p.
405102
.
56.
Yu
,
J.
,
Kim
,
S.
, and
Hwang
,
J.
,
2007
, “
Effect of Viscosity of Silver Nanoparticle Suspension on Conductive Line Patterned by Electrohydrodynamic Jet Printing
,”
Appl. Phys. A
,
89
(
1
), pp.
157
159
.
57.
Prasetyo
,
F. D.
,
Yudistira
,
H. T.
,
Nguyen
,
V. D.
, and
Byun
,
D.
,
2013
, “
Ag Dot Morphologies Printed Using Electrohydrodynamic (EHD) Jet Printing Based on a Drop-on-Demand (DOD) Operation
,”
J. Micromech. Microeng.
,
23
(
9
), p.
095028
.
58.
Wei
,
C.
,
Qin
,
H.
,
Ramírez-Iglesias
,
N. A.
,
Chiu
,
C.-P.
,
Lee
,
Y.-S.
, and
Dong
,
J.
,
2014
, “
High-Resolution ac-Pulse Modulated Electrohydrodynamic Jet Printing on Highly Insulating Substrates
,”
J. Micromech. Microeng.
,
24
(
4
), p.
045010
.
59.
Lee
,
D.-Y.
,
Shin
,
Y.-S.
,
Park
,
S.-E.
,
Yu
,
T.-U.
, and
Hwang
,
J.
,
2007
, “
Electrohydrodynamic Printing of Silver Nanoparticles by Using a Focused Nanocolloid Jet
,”
Appl. Phys. Lett.
,
90
(
8
), p.
081905
.
60.
Schneider
,
J.
,
Rohner
,
P.
,
Thureja
,
D.
,
Schmid
,
M.
,
Galliker
,
P.
, and
Poulikakos
,
D.
,
2016
, “
Electrohydrodynamic Nanodrip Printing of High Aspect Ratio Metal Grid Transparent Electrodes
,”
Adv. Funct. Mater.
,
26
(
6
), pp.
833
840
.
61.
Kim
,
B. H.
,
Onses
,
M. S.
,
Lim
,
J. B.
,
Nam
,
S.
,
Oh
,
N.
,
Kim
,
H.
,
Yu
,
K. J.
,
Lee
,
J. W.
,
Kim
,
J.-H.
, and
Kang
,
S.-K.
,
2015
, “
High-Resolution Patterns of Quantum Dots Formed by Electrohydrodynamic Jet Printing for Light-Emitting Diodes
,”
Nano Lett.
,
15
(
2
), pp.
969
973
.
62.
Lim
,
S.
,
Park
,
S. H.
,
An
,
T. K.
,
Lee
,
H. S.
, and
Kim
,
S. H.
,
2016
, “
Electrohydrodynamic Printing of Poly (3,4-Ethylenedioxythiophene): Poly (4-Styrenesulfonate) Electrodes With Ratio-Optimized Surfactant
,”
RSC Adv.
,
6
(
3
), pp.
2004
2010
.
63.
Park
,
J.-U.
,
Lee
,
J. H.
,
Paik
,
U.
,
Lu
,
Y.
, and
Rogers
,
J. A.
,
2008
, “
Nanoscale Patterns of Oligonucleotides Formed by Electrohydrodynamic Jet Printing With Applications in Biosensing and Nanomaterials Assembly
,”
Nano Lett.
,
8
(
12
), pp.
4210
4216
.
64.
Shigeta
,
K.
,
He
,
Y.
,
Sutanto
,
E.
,
Kang
,
S.
,
Le
,
A.-P.
,
Nuzzo
,
R. G.
,
Alleyne
,
A. G.
,
Ferreira
,
P. M.
,
Lu
,
Y.
, and
Rogers
,
J. A.
,
2012
, “
Functional Protein Microarrays by Electrohydrodynamic Jet Printing
,”
Anal. Chem.
,
84
(
22
), pp.
10012
10018
.
65.
Wei
,
C.
, and
Dong
,
J.
,
2014
, “
Development and Modeling of Melt Electrohydrodynamic-Jet Printing of Phase-Change Inks for High-Resolution Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061010
.
66.
Wei
,
C.
, and
Dong
,
J.
,
2013
, “
Direct Fabrication of High-Resolution Three-Dimensional Polymeric Scaffolds Using Electrohydrodynamic Hot Jet Plotting
,”
J. Micromech. Microeng.
,
23
(
2
), p.
025017
.
67.
Han
,
Y.
, and
Dong
,
J.
,
2017
, “
High-Resolution Direct Printing of Molten-Metal Using Electrohydrodynamic Jet Plotting
,”
Manuf. Lett.
,
12
, pp.
6
9
.
68.
Han
,
Y.
, and
Dong
,
J.
,
2018
, “
Electrohydrodynamic (EHD) Printing of Molten Metal Ink for Flexible and Stretchable Conductor With Self‐Healing Capability
,”
Adv. Mater. Technol.
,
3
(
3
), p.
1700268
.
69.
Cui
,
Z.
,
Han
,
Y.
,
Huang
,
Q.
,
Dong
,
J.
, and
Zhu
,
Y.
,
2018
, “
Electrohydrodynamic Printing of Silver Nanowires for Flexible and Stretchable Electronics
,”
Nanoscale
,
10
(
15
), pp.
6806
6811
.
70.
An
,
B. W.
,
Kim
,
K.
,
Kim
,
M.
,
Kim
,
S. Y.
,
Hur
,
S. H.
, and
Park
,
J. U.
,
2015
, “
Direct Printing of Reduced Graphene Oxide on Planar or Highly Curved Surfaces With High Resolutions Using Electrohydrodynamics
,”
Small
,
11
(
19
), pp.
2263
2268
.
71.
Rahman
,
K.
,
Khan
,
A.
,
Muhammad
,
N. M.
,
Jo
,
J.
, and
Choi
,
K.-H.
,
2012
, “
Fine-Resolution Patterning of Copper Nanoparticles Through Electrohydrodynamic Jet Printing
,”
J. Micromech. Microeng.
,
22
(
6
), p.
065012
.
72.
Jayasinghe
,
S.
,
Edirisinghe
,
M.
, and
Wang
,
D.
,
2004
, “
Controlled Deposition of Nanoparticle Clusters by Electrohydrodynamic Atomization
,”
Nanotechnology
,
15
(
11
), p.
1519
.
73.
Kang
,
D.
,
Lee
,
M.
,
Kim
,
H.
,
James
,
S.
, and
Yoon
,
S.
,
2011
, “
Electrohydrodynamic Pulsed-Inkjet Characteristics of Various Inks Containing Aluminum Particles
,”
J. Aerosol Sci.
,
42
(
10
), pp.
621
630
.
74.
Wang
,
D.
,
Jayasinghe
,
S.
, and
Edirisinghe
,
M.
,
2005
, “
High Resolution Print-Patterning of a Nano-Suspension
,”
J. Nanopart. Res.
,
7
(
2–3
), pp.
301
306
.
75.
Wang
,
D.
,
Edirisinghe
,
M.
, and
Jayasinghe
,
S.
,
2006
, “
Solid Freeform Fabrication of Thin‐Walled Ceramic Structures Using an Electrohydrodynamic Jet
,”
J. Am. Ceram. Soc.
,
89
(
5
), pp.
1727
1729
.
76.
Sabaeian
,
M.
, and
Khaledi-Nasab
,
A.
,
2012
, “
Size-Dependent Intersubband Optical Properties of Dome-Shaped InAs/GaAs Quantum Dots With Wetting Layer
,”
Appl. Opt.
,
51
(
18
), pp.
4176
4185
.
77.
Khaledi-Nasab
,
A.
,
Sabaeian
,
M.
,
Sahrai
,
M.
, and
Fallahi
,
V.
,
2014
, “
Kerr Nonlinearity Due to Intersubband Transitions in a Three-Level InAs/GaAs Quantum Dot: The Impact of a Wetting Layer on Dispersion Curves
,”
J. Opt.
,
16
(
5
), p.
055004
.
78.
Kim
,
J. Y.
,
Voznyy
,
O.
,
Zhitomirsky
,
D.
, and
Sargent
,
E. H.
,
2013
, “
25th Anniversary Article: Colloidal Quantum Dot Materials and Devices: A Quarter-Century of Advances
,”
Adv. Mater.
,
25
(
36
), pp.
4986
5010
.
79.
Gupta
,
A.
,
Seifalian
,
A. M.
,
Ahmad
,
Z.
,
Edirisinghe
,
M. J.
, and
Winslet
,
M. C.
,
2007
, “
Novel Electrohydrodynamic Printing of Nanocomposite Biopolymer Scaffolds
,”
J. Bioact. Compat. Polym.
,
22
(
3
), pp.
265
280
.
80.
Poellmann
,
M. J.
, and
Johnson
,
A. J. W.
,
2014
, “
Multimaterial Polyacrylamide: Fabrication With Electrohydrodynamic Jet Printing, Applications, and Modeling
,”
Biofabrication
,
6
(
3
), p.
035018
.
81.
Reneker
,
D. H.
, and
Yarin
,
A. L.
,
2008
, “
Electrospinning Jets and Polymer Nanofibers
,”
Polymer
,
49
(
10
), pp.
2387
2425
.
82.
Nothnagle
,
C.
,
Baptist
,
J. R.
,
Sanford
,
J.
,
Lee
,
W. H.
,
Popa
,
D. O.
, and
Wijesundara
,
M. B.
, “
EHD Printing of PEDOT: PSS Inks for Fabricating Pressure and Strain Sensor Arrays on Flexible Substrates
,”
Proc. SPIE
,
9494
, p.
949403
.
83.
Park
,
S. H.
,
Kim
,
J.
,
Park
,
C. E.
,
Lee
,
J.
,
Lee
,
H. S.
,
Lim
,
S.
, and
Kim
,
S. H.
,
2016
, “
Optimization of Electrohydrodynamic-Printed Organic Electrodes for Bottom-Contact Organic Thin Film Transistors
,”
Org. Electron.
,
38
, pp.
48
54
.
84.
Han
,
Y.
,
Wei
,
C.
, and
Dong
,
J.
,
2015
, “
Droplet Formation and Settlement of Phase-Change Ink in High Resolution Electrohydrodynamic (EHD) 3D Printing
,”
J. Manuf. Processes
,
20
(pt. 3), pp.
485
491
.
85.
Theron
,
S.
,
Zussman
,
E.
, and
Yarin
,
A.
,
2004
, “
Experimental Investigation of the Governing Parameters in the Electrospinning of Polymer Solutions
,”
Polymer
,
45
(
6
), pp.
2017
2030
.
86.
Lee
,
M.-W.
,
Lee
,
M.-Y.
,
Choi
,
J.-C.
,
Park
,
J.-S.
, and
Song
,
C.-K.
,
2010
, “
Fine Patterning of Glycerol-Doped PEDOT: PSS on Hydrophobic PVP Dielectric With Ink Jet for Source and Drain Electrode of OTFTs
,”
Org. Electron.
,
11
(
5
), pp.
854
859
.
87.
Bihar
,
E.
,
Roberts
,
T.
,
Saadaoui
,
M.
,
Herv
,
J.-S.
, and
Song
,
C.-K.
,
2010
, “
Fine Patterning of Glycerol‐Printed PEDOT: PSS Electrodes on Paper for Electrocardiography
,”
Adv. Healthcare Mater.
,
6
(
6
), p.
1601167
.
88.
Vuorinen
,
T.
,
Niittynen
,
J.
,
Kankkunen
,
T.
,
Kraft
,
T. M.
, and
Mäntysalo
,
M.
,
2016
, “
Inkjet-Printed Graphene/PEDOT: PSS Temperature Sensors on a Skin-Conformable Polyurethane Substrate
,”
Sci. Rep.
,
6
, p.
35289
.
89.
Jang
,
S.
,
Kim
,
Y.
, and
Oh
,
J. H.
,
2016
, “
Influence of Processing Conditions and Material Properties on Electrohydrodynamic Direct Patterning of a Polymer Solution
,”
J. Electron. Mater.
,
45
(
4
), pp.
2291
2298
.
90.
Onses
,
M. S.
,
Song
,
C.
,
Williamson
,
L.
,
Sutanto
,
E.
,
Ferreira
,
P. M.
,
Alleyne
,
A. G.
,
Nealey
,
P. F.
,
Ahn
,
H.
, and
Rogers
,
J. A.
,
2013
, “
Hierarchical Patterns of Three-Dimensional Block-Copolymer Films Formed by Electrohydrodynamic Jet Printing and Self-Assembly
,”
Nat. Nanotechnol.
,
8
(
9
), pp.
667
675
.
91.
Lee
,
J.-G.
,
Cho
,
H.-J.
,
Huh
,
N.
,
Ko
,
C.
,
Lee
,
W.-C.
,
Jang
,
Y.-H.
,
Lee
,
B. S.
,
Kang
,
I. S.
, and
Choi
,
J.-W.
,
2006
, “
Electrohydrodynamic (EHD) Dispensing of Nanoliter DNA Droplets for Microarrays
,”
Biosens. Bioelectron.
,
21
(
12
), pp.
2240
2247
.
92.
Boley
,
J. W.
,
White
,
E. L.
,
Chiu
,
G. T. C.
, and
Kramer
,
R. K.
,
2014
, “
Direct Writing of Gallium‐Indium Alloy for Stretchable Electronics
,”
Adv. Funct. Mater.
,
24
(
23
), pp.
3501
3507
.
93.
Lee
,
T.-M.
,
Kang
,
T. G.
,
Yang
,
J.-S.
,
Jo
,
J.-D.
,
Kim
,
K.-Y.
,
Choi
,
B.-O.
, and
Kim
,
D.-S.
, 2007, “
3D Metal Microstructure Fabrication Using a Molten Metal DoD Inkjet System
,”
Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS 2007)
, Lyon, France, June 10–14, pp.
1637
1640
.
94.
Wang
,
Q.
,
Yu
,
Y.
,
Yang
,
J.
, and
Liu
,
J.
,
2015
, “
Fast Fabrication of Flexible Functional Circuits Based on Liquid Metal Dual‐Trans Printing
,”
Adv. Mater.
,
27
(
44
), pp.
7109
7116
.
95.
Lee
,
T.-M.
,
Kang
,
T. G.
,
Yang
,
J. S.
,
Jo
,
J.
,
Kim
,
K.-Y.
,
Choi
,
B.-O.
, and
Kim
,
D.-S.
,
2008
, “
Gap Adjustable Molten Metal DoD Inkjet System With Cone-Shaped Piston Head
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031113
.
96.
Murr
,
L. E.
,
Gaytan
,
S. M.
,
Ramirez
,
D. A.
,
Martinez
,
E.
,
Hernandez
,
J.
,
Amato
,
K. N.
,
Shindo
,
P. W.
,
Medina
,
F. R.
, and
Wicker
,
R. B.
,
2012
, “
Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies
,”
J. Mater. Sci. Technol.
,
28
(
1
), pp.
1
14
.
97.
Agarwala
,
M.
,
Bourell
,
D.
,
Beaman
,
J.
,
Marcus
,
H.
, and
Barlow
,
J.
,
1995
, “
Direct Selective Laser Sintering of Metals
,”
Rapid Prototyping J.
,
1
(
1
), pp.
26
36
.
98.
Langley
,
D.
,
Giusti
,
G.
,
Mayousse
,
C.
,
Celle
,
C.
,
Bellet
,
D.
, and
Simonato
,
J.-P.
,
2013
, “
Flexible Transparent Conductive Materials Based on Silver Nanowire Networks: A Review
,”
Nanotechnology
,
24
(
45
), p.
452001
.
99.
Yao
,
S.
, and
Zhu
,
Y.
,
2015
, “
Nanomaterial-Enabled Stretchable Conductors: Strategies, Materials and Devices
,”
Adv. Mater.
,
27
(
9
), pp.
1480
1511
.
100.
Lee
,
H.
,
Seong
,
B.
,
Kim
,
J.
,
Jang
,
Y.
, and
Byun
,
D.
,
2014
, “
Direct Alignment and Patterning of Silver Nanowires by Electrohydrodynamic Jet Printing
,”
Small
,
10
(
19
), pp.
3918
3922
.
101.
Lee
,
S.
,
An
,
K.
,
Son
,
S.
, and
Choi
,
J.
,
2013
, “
Satellite/Spray Suppression in Electrohydrodynamic Printing With a Gated Head
,”
Appl. Phys. Lett.
,
103
(
13
), p.
133506
.
102.
Xu
,
L.
, and
Sun
,
D.
,
2013
, “
Electrohydrodynamic Printing Under Applied Pole-Type Nozzle Configuration
,”
Appl. Phys. Lett.
,
102
(
2
), p.
024101
.
103.
Choi
,
J.
,
Kim
,
Y.-J.
,
Lee
,
S.
,
Son
,
S. U.
,
Ko
,
H. S.
,
Nguyen
,
V. D.
, and
Byun
,
D.
,
2008
, “
Drop-on-Demand Printing of Conductive Ink by Electrostatic Field Induced Inkjet Head
,”
Appl. Phys. Lett.
,
93
(
19
), p.
193508
.
104.
Kim
,
H.
,
Song
,
J.
,
Chung
,
J.
, and
Hong
,
D.
,
2010
, “
Onset Condition of Pulsating Cone-Jet Mode of Electrohydrodynamic Jetting for Plane, Hole, and Pin Type Electrodes
,”
J. Appl. Phys.
,
108
(
10
), p.
102804
.
105.
Tse
,
L.
, and
Barton
,
K.
,
2015
, “
Airflow Assisted Printhead for High-Resolution Electrohydrodynamic Jet Printing Onto Non-Conductive and Tilted Surfaces
,”
Appl. Phys. Lett.
,
107
(
5
), p.
054103
.
106.
Tse
,
L.
, and
Barton
,
K.
,
2014
, “
A Field Shaping Printhead for High-Resolution Electrohydrodynamic Jet Printing Onto Non-Conductive and Uneven Surfaces
,”
Appl. Phys. Lett.
,
104
(
14
), p.
143510
.
107.
Han
,
Y.
, and
Dong
,
J.
,
2017
, “
Design, Modeling and Testing of Integrated Ring Extractor for High Resolution Electrohydrodynamic (EHD) 3D Printing
,”
J. Micromech. Microeng.
,
27
(
3
), p.
035005
.
108.
Pan
,
Y.
,
Huang
,
Y.
,
Guo
,
L.
,
Ding
,
Y.
, and
Yin
,
Z.
,
2015
, “
Addressable Multi-Nozzle Electrohydrodynamic Jet Printing With High Consistency by Multi-Level Voltage Method
,”
AIP Adv.
,
5
(
4
), p.
047108
.
109.
Han
,
Y.
,
Wei
,
C.
, and
Dong
,
J.
,
2014
, “
Super-Resolution Electrohydrodynamic (EHD) 3D Printing of Micro-Structures Using Phase-Change Inks
,”
Manuf. Lett.
,
2
(
4
), pp.
96
99
.
110.
Kim
,
S.-Y.
,
Kim
,
Y.
,
Park
,
J.
, and
Hwang
,
J.
,
2010
, “
Design and Evaluation of Single Nozzle With a Non-Conductive Tip for Reducing Applied Voltage and Pattern Width in Electrohydrodynamic Jet Printing (EHDP)
,”
J. Micromech. Microeng.
,
20
(
5
), p.
055009
.
111.
Barton
,
K.
,
Mishra
,
S.
,
Shorter
,
K. A.
,
Alleyne
,
A.
,
Ferreira
,
P.
, and
Rogers
,
J.
,
2010
, “
A Desktop Electrohydrodynamic Jet Printing System
,”
Mechatronics
,
20
(
5
), pp.
611
616
.
112.
Khan
,
A.
,
Rahman
,
K.
,
Kim
,
D. S.
, and
Choi
,
K. H.
,
2012
, “
Direct Printing of Copper Conductive Micro-Tracks by Multi-Nozzle Electrohydrodynamic Inkjet Printing Process
,”
J. Mater. Process. Technol.
,
212
(
3
), pp.
700
706
.
113.
Khan
,
A.
,
Rahman
,
K.
,
Hyun
,
M.-T.
,
Kim
,
D.-S.
, and
Choi
,
K.-H.
,
2011
, “
Multi-Nozzle Electrohydrodynamic Inkjet Printing of Silver Colloidal Solution for the Fabrication of Electrically Functional Microstructures
,”
Appl. Phys. A
,
104
(
4
), p.
1113
.
114.
Lee
,
J.-S.
,
Kim
,
S.-Y.
,
Kim
,
Y.-J.
,
Park
,
J.
,
Kim
,
Y.
,
Hwang
,
J.
, and
Kim
,
Y.-J.
,
2008
, “
Design and Evaluation of a Silicon Based Multi-Nozzle for Addressable Jetting Using a Controlled Flow Rate in Electrohydrodynamic Jet Printing
,”
Appl. Phys. Lett.
,
93
(
24
), p.
243114
.
115.
Sutanto
,
E.
,
Shigeta
,
K.
,
Kim
,
Y.
,
Graf
,
P.
,
Hoelzle
,
D.
,
Barton
,
K.
,
Alleyne
,
A.
,
Ferreira
,
P.
, and
Rogers
,
J.
,
2012
, “
A Multimaterial Electrohydrodynamic Jet (E-Jet) Printing System
,”
J. Micromech. Microeng.
,
22
(
4
), p.
045008
.
116.
Park
,
J.
,
Kim
,
B.
,
Kim
,
S.-Y.
, and
Hwang
,
J.
,
2014
, “
Prediction of Drop-on-Demand (DOD) Pattern Size in Pulse Voltage-Applied Electrohydrodynamic (EHD) Jet Printing of Ag Colloid Ink
,”
Appl. Phys. A
,
117
(
4
), pp.
2225
2234
.
117.
Galliker
,
P.
,
Schneider
,
J.
,
Eghlidi
,
H.
,
Kress
,
S.
,
Sandoghdar
,
V.
, and
Poulikakos
,
D.
,
2012
, “
Direct Printing of Nanostructures by Electrostatic Autofocussing of Ink Nanodroplets
,”
Nat. Commun.
,
3
, p.
890
.
118.
Xing
,
B.
,
Zuo
,
C. C.
,
Huang
,
F. L.
,
Lu
,
Y. B.
, and
Hu
,
G. S.
,
2017
, “
Effect of Electrode Distance on Jetting Behavior of Non-Particle Nano Ag Conductive Ink in Electrohydrodynamic Micro Jet Printing
,”
Mater. Sci. Forum
,
893
, pp.
118
121
.
119.
Chen
,
C.-H.
,
Saville
,
D.
, and
Aksay
,
I.
,
2006
, “
Electrohydrodynamic “Drop-and-Place” Particle Deployment
,”
Appl. Phys. Lett.
,
88
(
15
), p.
154104
.
120.
Mishra
,
S.
,
Barton
,
K. L.
,
Alleyne
,
A. G.
,
Ferreira
,
P. M.
, and
Rogers
,
J. A.
,
2010
, “
High-Speed and Drop-on-Demand Printing With a Pulsed Electrohydrodynamic Jet
,”
J. Micromech. Microeng.
,
20
(
9
), p.
095026
.
121.
Kim
,
J.
,
Oh
,
H.
, and
Kim
,
S. S.
,
2008
, “
Electrohydrodynamic Drop-on-Demand Patterning in Pulsed Cone-Jet Mode at Various Frequencies
,”
J. Aerosol Sci.
,
39
(
9
), pp.
819
825
.
122.
Lee
,
S.
,
Song
,
J.
,
Kim
,
H.
, and
Chung
,
J.
,
2012
, “
Time Resolved Imaging of Electrohydrodynamic Jetting on Demand Induced by Square Pulse Voltage
,”
J. Aerosol Sci.
,
52
, pp.
89
97
.
123.
Rahman
,
K.
,
Khan
,
A.
,
Nam
,
N. M.
,
Choi
,
K. H.
, and
Kim
,
D.-S.
,
2011
, “
Study of Drop-on-Demand Printing Through Multi-Step Pulse Voltage
,”
Int. J. Precis. Eng. Manuf.
,
12
(
4
), pp.
663
669
.
124.
Lee
,
M. W.
,
An
,
S.
,
Kim
,
N. Y.
,
Seo
,
J. H.
,
Huh
,
J.-Y.
,
Kim
,
H. Y.
, and
Yoon
,
S. S.
,
2013
, “
Effects of Pulsing Frequency on Characteristics of Electrohydrodynamic Inkjet Using Micro-Al and Nano-Ag Particles
,”
Exp. Therm. Fluid Sci.
,
46
, pp.
103
110
.
125.
Xu
,
L.
,
Wang
,
X.
,
Lei
,
T.
,
Sun
,
D.
, and
Lin
,
L.
,
2011
, “
Electrohydrodynamic Deposition of Polymeric Droplets Under Low-Frequency Pulsation
,”
Langmuir
,
27
(
10
), pp.
6541
6548
.
126.
Wei
,
C.
,
Qin
,
H.
,
Chiu
,
C.-P.
,
Lee
,
Y.-S.
, and
Dong
,
J.
,
2015
, “
Drop-on-Demand E-Jet Printing of Continuous Interconnects With AC-Pulse Modulation on Highly Insulating Substrates
,”
J. Manuf. Syst.
,
37
, pp.
505
510
.
127.
Kim
,
Y.-J.
,
Kim
,
S.
,
Hwang
,
J.
, and
Kim
,
Y.-J.
,
2013
, “
Drop-on-Demand Hybrid Printing Using a Piezoelectric MEMS Printhead at Various Waveforms, High Voltages and Jetting Frequencies
,”
J. Micromech. Microeng.
,
23
(
6
), p.
065011
.
128.
Zheng
,
G.
,
Sun
,
L.
,
Wang
,
X.
,
Wei
,
J.
,
Xu
,
L.
,
Liu
,
Y.
,
Zheng
,
J.
, and
Liu
,
J.
,
2016
, “
Electrohydrodynamic Direct-Writing Microfiber Patterns Under Stretching
,”
Appl. Phys. A
,
122
(
2
), p.
112
.
129.
Park
,
J.
,
Park
,
J.-W.
,
Nasrabadi
,
A. M.
, and
Hwang
,
J.
,
2016
, “
Methodology to Set Up Nozzle-to-Substrate Gap for High Resolution Electrohydrodynamic Jet Printing
,”
Appl. Phys. Lett.
,
109
(
13
), p.
134104
.
130.
Jang
,
Y.
,
Hartarto Tambunan
,
I.
,
Tak
,
H.
,
Dat Nguyen
,
V.
,
Kang
,
T.
, and
Byun
,
D.
,
2013
, “
Non-Contact Printing of High Aspect Ratio Ag Electrodes for Polycrystalline Silicone Solar Cell With Electrohydrodynamic Jet Printing
,”
Appl. Phys. Lett.
,
102
(
12
), p.
123901
.
131.
Wu
,
Y.
,
Wang
,
Z.
,
Ying Hsi Fuh
,
J.
,
San Wong
,
Y.
,
Wang
,
W.
, and
San Thian
,
E.
,
2017
, “
Direct E‐Jet Printing of Three‐Dimensional Fibrous Scaffold for Tendon Tissue Engineering
,”
J. Biomed. Mater. Res., Part B
,
105
(
3
), pp.
616
627
.
132.
Jeong
,
S.
,
Lee
,
S. H.
,
Jo
,
Y.
,
Lee
,
S. S.
,
Seo
,
Y.-H.
,
Ahn
,
B. W.
,
Kim
,
G.
,
Jang
,
G.-E.
,
Park
,
J.-U.
, and
Ryu
,
B.-H.
,
2013
, “
Air-Stable, Surface-Oxide Free Cu Nanoparticles for Highly Conductive Cu Ink and Their Application to Printed Graphene Transistors
,”
J. Mater. Chem. C
,
1
(
15
), pp.
2704
2710
.
133.
Jeong
,
Y. J.
,
Lee
,
X.
,
Bae
,
J.
,
Jang
,
J.
,
Joo
,
S. W.
,
Lim
,
S.
,
Kim
,
S. H.
, and
Park
,
C. E.
,
2016
, “
Direct Patterning of Conductive Carbon Nanotube/Polystyrene Sulfonate Composites Via Electrohydrodynamic Jet Printing for Use in Organic Field-Effect Transistors
,”
J. Mater. Chem. C
,
4
(
22
), pp.
4912
4919
.
134.
Seong
,
B.
,
Yoo
,
H.
,
Nguyen
,
V. D.
,
Jang
,
Y.
,
Ryu
,
C.
, and
Byun
,
D.
,
2014
, “
Metal-Mesh Based Transparent Electrode on a 3-D Curved Surface by Electrohydrodynamic Jet Printing
,”
J. Micromech. Microeng.
,
24
(
9
), p.
097002
.
135.
Wei
,
C.
, and
Dong
,
J.
,
2014
, “
Hybrid Hierarchical Fabrication of Three-Dimensional Scaffolds
,”
J. Manuf. Processes
,
16
(
2
), pp.
257
263
.
136.
Zhang
,
B.
,
Seong
,
B.
,
Nguyen
,
V.
, and
Byun
,
D.
,
2016
, “
3D Printing of High-Resolution PLA-Based Structures by Hybrid Electrohydrodynamic and Fused Deposition Modeling Techniques
,”
J. Micromech. Microeng.
,
26
(
2
), p.
025015
.
137.
Chen
,
C.-H.
,
Saville
,
D.
, and
Aksay
,
I.
,
2006
, “
Scaling Laws for Pulsed Electrohydrodynamic Drop Formation
,”
Appl. Phys. Lett.
,
89
(
12
), p.
124103
.
138.
Du
,
W.
, and
Chaudhuri
,
S.
,
2017
, “
A Multiphysics Model for Charged Liquid Droplet Breakup in Electric Fields
,”
Int. J. Multiphase Flow
,
90
, pp.
46
56
.
139.
Kim
,
Y.-J.
,
Choi
,
J.
,
Son
,
S. U.
,
Lee
,
S.
,
Nguyen
,
X. H.
,
Nguyen
,
V. D.
,
Byun
,
D.
, and
Ko
,
H. S.
,
2010
, “
Comparative Study on Ejection Phenomena of Droplets From Electro-Hydrodynamic Jet by Hydrophobic and Hydrophilic Coatings of Nozzles
,”
Jpn. J. Appl. Phys.
,
49
(
6
), p.
060217
.
140.
Yudistira
,
H. T.
,
Nguyen
,
V. D.
,
Dutta
,
P.
, and
Byun
,
D.
,
2010
, “
Flight Behavior of Charged Droplets in Electrohydrodynamic Inkjet Printing
,”
Appl. Phys. Lett.
,
96
(
2
), p.
023503
.
141.
Collins
,
R. T.
,
Sambath
,
K.
,
Harris
,
M. T.
, and
Basaran
,
O. A.
,
2013
, “
Universal Scaling Laws for the Disintegration of Electrified Drops
,”
Proc. Natl. Acad. Sci.
,
110
(
13
), pp.
4905
4910
.
142.
Collins
,
R. T.
,
Harris
,
M. T.
, and
Basaran
,
O. A.
,
2007
, “
Breakup of Electrified Jets
,”
J. Fluid Mech.
,
588
, pp.
75
129
.
143.
Mestel
,
A.
,
1994
, “
The Electrohydrodynamic Cone-Jet at High Reynolds Number
,”
J. Aerosol Sci.
,
25
(
6
), pp.
1037
1047
.
144.
Ganan-Calvo
,
A. M.
,
1997
, “
On the Theory of Electrohydrodynamically Driven Capillary Jets
,”
J. Fluid Mech.
,
335
, pp.
165
188
.
145.
Wei
,
W.
,
Gu
,
Z.
,
Wang
,
S.
,
Zhang
,
Y.
,
Lei
,
K.
, and
Kase
,
K.
,
2012
, “
Numerical Simulation of the Cone–Jet Formation and Current Generation in Electrostatic Spray—Modeling as Regards Space Charged Droplet Effect
,”
J. Micromech. Microeng.
,
23
(
1
), p.
015004
.
146.
Yan
,
F.
,
Farouk
,
B.
, and
Ko
,
F.
,
2003
, “
Numerical Modeling of an Electrostatically Driven Liquid Meniscus in the Cone–Jet Mode
,”
J. Aerosol Sci.
,
34
(
1
), pp.
99
116
.
147.
Pannier
,
C. P.
,
Diagne
,
M.
,
Spiegel
,
I. A.
,
Hoelzle
,
D. J.
, and
Barton
,
K.
,
2017
, “
A Dynamical Model of Drop Spreading in Electrohydrodynamic Jet Printing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
11
), p.
111008
.
148.
Rahmat
,
A.
,
Koç
,
B.
, and
Yildiz
,
M.
,
2017
, “
A Systematic Study on Numerical Simulation of Electrified Jet Printing
,”
Addit. Manuf.
,
18
, pp.
15
21
.
149.
Tran
,
S. B. Q.
,
Byun
,
D.
,
Nguyen
,
V. D.
, and
Kang
,
T. S.
,
2009
, “
Liquid Meniscus Oscillation and Drop Ejection by ac Voltage, Pulsed dc Voltage, and Superimposing dc to ac Voltages
,”
Phys. Rev. E
,
80
(
2
), p.
026318
.
150.
Nguyen
,
V. D.
, and
Byun
,
D.
,
2009
, “
Mechanism of Electrohydrodynamic Printing Based on ac Voltage Without a Nozzle Electrode
,”
Appl. Phys. Lett.
,
94
(
17
), p.
173509
.
151.
Ashley
,
S.
,
1991
, “
Rapid Prototyping Systems
,”
Mech. Eng.
,
113
(
4
), pp.
34
43
.
152.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, Springer-Verlag, Berlin.
153.
Kruth
,
J.-P.
,
Leu
,
M.-C.
, and
Nakagawa
,
T.
,
1998
, “
Progress in Additive Manufacturing and Rapid Prototyping
,”
CIRP Ann.
,
47
(
2
), pp.
525
540
.
154.
Melchels
,
F. P.
,
Domingos
,
M. A.
,
Klein
,
T. J.
,
Malda
,
J.
,
Bartolo
,
P. J.
, and
Hutmacher
,
D. W.
,
2012
, “
Additive Manufacturing of Tissues and Organs
,”
Prog. Polym. Sci.
,
37
(
8
), pp.
1079
1104
.
155.
Kruth
,
J.-P.
,
1991
, “
Material Incress Manufacturing by Rapid Prototyping Techniques
,”
CIRP Ann.-Manuf. Technol.
,
40
(
2
), pp.
603
614
.
156.
An
,
B. W.
,
Kim
,
K.
,
Lee
,
H.
,
Kim
,
S. Y.
,
Shim
,
Y.
,
Lee
,
D. Y.
,
Song
,
J. Y.
, and
Park
,
J. U.
,
2015
, “
High‐Resolution Printing of 3D Structures Using an Electrohydrodynamic Inkjet With Multiple Functional Inks
,”
Adv. Mater.
,
27
(
29
), pp.
4322
4328
.
157.
Brown
,
T. D.
,
Dalton
,
P. D.
, and
Hutmacher
,
D. W.
,
2011
, “
Direct Writing by Way of Melt Electrospinning
,”
Adv. Mater.
,
23
(
47
), pp.
5651
5657
.
158.
Zhao
,
X.
,
He
,
J.
,
Xu
,
F.
,
Liu
,
Y.
, and
Li
,
D.
,
2016
, “
Electrohydrodynamic Printing: A Potential Tool for High-Resolution Hydrogel/Cell Patterning
,”
Virtual Phys. Prototyping
,
11
(
1
), pp.
57
63
.
159.
Jayasinghe
,
S. N.
,
Qureshi
,
A. N.
, and
Eagles
,
P. A.
,
2006
, “
Electrohydrodynamic Jet Processing: An Advanced Electric‐Field‐Driven Jetting Phenomenon for Processing Living Cells
,”
Small
,
2
(
2
), pp.
216
219
.
160.
Eagles
,
P. A.
,
Qureshi
,
A. N.
, and
Jayasinghe
,
S. N.
,
2006
, “
Electrohydrodynamic Jetting of Mouse Neuronal Cells
,”
Biochem. J.
,
394
(
2
), pp.
375
378
.
161.
Faulkner-Jones
,
A.
,
Greenhough
,
S.
,
King
,
J. A.
,
Gardner
,
J.
,
Courtney
,
A.
, and
Shu
,
W.
,
2013
, “
Development of a Valve-Based Cell Printer for the Formation of Human Embryonic Stem Cell Spheroid Aggregates
,”
Biofabrication
,
5
(
1
), p.
015013
.
162.
Mehta
,
P.
,
Haj-Ahmad
,
R.
,
Rasekh
,
M.
,
Arshad
,
M. S.
,
Smith
,
A.
,
van der Merwe
,
S. M.
,
Li
,
X.
,
Chang
,
M.-W.
, and
Ahmad
,
Z.
,
2017
, “
Pharmaceutical and Biomaterial Engineering Via Electrohydrodynamic Atomization Technologies
,”
Drug Discovery Today
,
22
(
1
), pp.
157
165
.
163.
Kim
,
J.-H.
,
Lee
,
D.-Y.
,
Hwang
,
J.
, and
Jung
,
H.-I.
,
2009
, “
Direct Pattern Formation of Bacterial Cells Using Micro-Droplets Generated by Electrohydrodynamic Forces
,”
Microfluid. Nanofluid.
,
7
(
6
), pp.
829
839
.
164.
Gasperini
,
L.
,
Maniglio
,
D.
,
Motta
,
A.
, and
Migliaresi
,
C.
,
2014
, “
An Electrohydrodynamic Bioprinter for Alginate Hydrogels Containing Living Cells
,”
Tissue Eng., Part C
,
21
(
2
), pp.
123
132
.
165.
Ringeisen
,
B. R.
,
Othon
,
C. M.
,
Barron
,
J. A.
,
Young
,
D.
, and
Spargo
,
B. J.
,
2006
, “
Jet‐Based Methods to Print Living Cells
,”
Biotechnol. J.: Healthcare Nutr. Technol.
,
1
(
9
), pp.
930
948
.
166.
Xu
,
T.
,
Jin
,
J.
,
Gregory
,
C.
,
Hickman
,
J. J.
, and
Boland
,
T.
,
2005
, “
Inkjet Printing of Viable Mammalian Cells
,”
Biomaterials
,
26
(
1
), pp.
93
99
.
167.
Liu
,
Y.
,
Jiang
,
C.
,
Liu
,
Y.
,
Li
,
D.
, and
Hu
,
Q.
, “
Electrohydrodynamic Direct Printing on Hydrogel: A Novel Method to Obtain Fine Fibers
,”
Proc. SPIE
,
9930
, p.
993010
.
168.
Poellmann
,
M. J.
,
Barton
,
K. L.
,
Mishra
,
S.
, and
Johnson
,
A. J. W.
,
2011
, “
Patterned Hydrogel Substrates for Cell Culture With Electrohydrodynamic Jet Printing
,”
Macromol. Biosci.
,
11
(
9
), pp.
1164
1168
.
169.
Hanson Shepherd
,
J. N.
,
Parker
,
S. T.
,
Shepherd
,
R. F.
,
Gillette
,
M. U.
,
Lewis
,
J. A.
, and
Nuzzo
,
R. G.
,
2011
, “
3D Microperiodic Hydrogel Scaffolds for Robust Neuronal Cultures
,”
Adv. Funct. Mater.
,
21
(
1
), pp.
47
54
.
170.
Gasperini
,
L.
,
Maniglio
,
D.
, and
Migliaresi
,
C.
,
2013
, “
Microencapsulation of Cells in Alginate Through an Electrohydrodynamic Process
,”
J. Bioact. Compat. Polym.
,
28
(
5
), pp.
413
425
.
171.
Liaudanskaya
,
V.
,
Gasperini
,
L.
,
Maniglio
,
D.
,
Motta
,
A.
, and
Migliaresi
,
C.
,
2015
, “
Assessing the Impact of Electrohydrodynamic Jetting on Encapsulated Cell Viability, Proliferation, and Ability to Self-Assemble in Three-Dimensional Structures
,”
Tissue Eng., Part C
,
21
(
6
), pp.
631
638
.
172.
Xu
,
T.
,
Petridou
,
S.
,
Lee
,
E. H.
,
Roth
,
E. A.
,
Vyavahare
,
N. R.
,
Hickman
,
J. J.
, and
Boland
,
T.
,
2004
, “
Construction of High-Density Bacterial Colony Arrays and Patterns by the Ink-Jet Method
,”
Biotechnol. Bioeng.
,
85
(
1
), pp.
29
33
.
173.
Ahmad
,
Z.
,
Rasekh
,
M.
, and
Edirisinghe
,
M.
,
2010
, “
Electrohydrodynamic Direct Writing of Biomedical Polymers and Composites
,”
Macromol. Mater. Eng.
,
295
(
4
), pp.
315
319
.
174.
Kim
,
H. S.
,
Lee
,
D. Y.
,
Park
,
J. H.
,
Kim
,
J. H.
,
Hwang
,
J. H.
, and
Jung
,
H. I.
,
2007
, “
Optimization of Electrohydrodynamic Writing Technique to Print Collagen
,”
Exp. Tech.
,
31
(
4
), pp.
15
19
.
175.
Cheung
,
H.-Y.
,
Lau
,
K.-T.
,
Lu
,
T.-P.
, and
Hui
,
D.
,
2007
, “
A Critical Review on Polymer-Based Bio-Engineered Materials for Scaffold Development
,”
Composites, Part B
,
38
(
3
), pp.
291
300
.
176.
George
,
M. C.
, and
Braun
,
P. V.
,
2009
, “
Multicompartmental Materials by Electrohydrodynamic Cojetting
,”
Angew. Chem. Int. Ed.
,
48
(
46
), pp.
8606
8609
.
177.
Li
,
J. L.
,
Cai
,
Y. L.
,
Guo
,
Y. L.
,
Fuh
,
J. Y. H.
,
Sun
,
J.
,
Hong
,
G. S.
,
Lam
,
R. N.
,
Wong
,
Y. S.
,
Wang
,
W.
, and
Tay
,
B. Y.
,
2014
, “
Fabrication of Three-Dimensional Porous Scaffolds With Controlled Filament Orientation and Large Pore Size Via an Improved E-Jetting Technique
,”
J. Biomed. Mater. Res., Part B
,
102
(
4
), pp.
651
658
.
178.
Wu
,
Y.
,
Fuh
,
J.
,
Wong
,
Y.
, and
Sun
,
J.
, “
Fabrication of 3D Scaffolds Via E-Jet Printing for Tendon Tissue Repair
,”
ASME
Paper No. MSEC2015-9367.
179.
Wang
,
H.
,
Vijayavenkataraman
,
S.
,
Wu
,
Y.
,
Shu
,
Z.
,
Sun
,
J.
, and
Fuh
,
J. Y. H.
,
2016
, “
Investigation of Process Parameters of Electrohydro-Dynamic Jetting for 3D Printed PCL Fibrous Scaffolds With Complex Geometries
,”
Int. J. Bioprint.
,
2
(
1
), pp.
63
71
.
180.
Liu
,
T.
,
Huang
,
R.
,
Zhong
,
J.
,
Yang
,
Y.
,
Tan
,
Z.
, and
Tan
,
W.
,
2017
, “
Control of Cell Proliferation in E-Jet 3D-Printed Scaffolds for Tissue Engineering Applications: The Influence of the Cell Alignment Angle
,”
J. Mater. Chem. B
,
5
(
20
), pp.
3728
3738
.
181.
Hwang
,
T. H.
,
Kim
,
Y. J.
,
Chung
,
H.
, and
Ryu
,
W.
,
2016
, “
Motionless Electrohydrodynamic (EHD) Printing of Biodegradable Polymer Micro Patterns
,”
Microelectron. Eng.
,
161
, pp.
43
51
.
182.
Awais
,
M. N.
,
Kim
,
H. C.
,
Doh
,
Y. H.
, and
Choi
,
K. H.
,
2013
, “
ZrO2 Flexible Printed Resistive (Memristive) Switch Through Electrohydrodynamic Printing Process
,”
Thin Solid Films
,
536
, pp.
308
312
.
183.
Khan
,
S.
,
Doh
,
Y. H.
,
Khan
,
A.
,
Rahman
,
A.
,
Choi
,
K. H.
, and
Kim
,
D. S.
,
2011
, “
Direct Patterning and Electrospray Deposition Through EHD for Fabrication of Printed Thin Film Transistors
,”
Curr. Appl. Phys.
,
11
(
1
), pp.
S271
S279
.
184.
Gao-Feng
,
Z.
,
Yan-Bo
,
P.
,
Xiang
,
W.
,
Jian-Yi
,
Z.
, and
Dao-Heng
,
S.
,
2014
, “
Electrohydrodynamic Direct—Writing of Conductor—Insulator-Conductor Multi-Layer Interconnection
,”
Chin. Phys. B
,
23
(
6
), p.
066102
.
185.
Wang
,
X.
,
Xu
,
L.
,
Zheng
,
G.
,
Cheng
,
W.
, and
Sun
,
D.
,
2012
, “
Pulsed Electrohydrodynamic Printing of Conductive Silver Patterns on Demand
,”
Sci. China Technol. Sci.
,
55
(
6
), pp.
1603
1607
.
186.
Wang
,
K.
, and
Stark
,
J. P.
,
2010
, “
Direct Fabrication of Electrically Functional Microstructures by Fully Voltage-Controlled Electrohydrodynamic Jet Printing of Silver Nano-Ink
,”
Appl. Phys. A
,
99
(
4
), pp.
763
766
.
187.
Kim
,
S.-Y.
,
Kim
,
K.
,
Hwang
,
Y.
,
Park
,
J.
,
Jang
,
J.
,
Nam
,
Y.
,
Kang
,
Y.
,
Kim
,
M.
,
Park
,
H.
, and
Lee
,
Z.
,
2016
, “
High-Resolution Electrohydrodynamic Inkjet Printing of Stretchable Metal Oxide Semiconductor Transistors With High Performance
,”
Nanoscale
,
8
(
39
), pp.
17113
17121
.
188.
Qin
,
H.
,
Cai
,
Y.
,
Dong
,
J.
, and
Lee
,
Y.-S.
,
2017
, “
Direct Printing of Capacitive Touch Sensors on Flexible Substrates by Additive E-Jet Printing With Silver Nanoinks
,”
ASME J. Manuf. Sci. Eng.
,
139
(
3
), p.
031011
.
189.
Pikul
,
J. H.
,
Graf
,
P.
,
Mishra
,
S.
,
Barton
,
K.
,
Kim
,
Y.-K.
,
Rogers
,
J. A.
,
Alleyne
,
A.
,
Ferreira
,
P. M.
, and
King
,
W. P.
,
2011
, “
High Precision Electrohydrodynamic Printing of Polymer Onto Microcantilever Sensors
,”
IEEE Sensors J.
,
11
(
10
), pp.
2246
2253
.
190.
Lee
,
S.
,
Kim
,
J.
,
Choi
,
J.
,
Park
,
H.
,
Ha
,
J.
,
Kim
,
Y.
,
Rogers
,
J. A.
, and
Paik
,
U.
,
2012
, “
Patterned Oxide Semiconductor by Electrohydrodynamic Jet Printing for Transparent Thin Film Transistors
,”
Appl. Phys. Lett.
,
100
(
10
), p.
102108
.
191.
Park
,
H.-G.
,
Byun
,
S.-U.
,
Jeong
,
H.-C.
,
Lee
,
J.-W.
, and
Seo
,
D.-S.
,
2013
, “
Photoreactive Spacer Prepared Using Electrohydrodynamic Printing for Application in a Liquid Crystal Device
,”
ECS Solid State Lett.
,
2
(
12
), pp.
R52
R54
.
192.
Ahn
,
B. Y.
,
Duoss
,
E. B.
,
Motala
,
M. J.
,
Guo
,
X.
,
Park
,
S.-I.
,
Xiong
,
Y.
,
Yoon
,
J.
,
Nuzzo
,
R. G.
,
Rogers
,
J. A.
, and
Lewis
,
J. A.
,
2009
, “
Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes
,”
Science
,
323
(
5921
), pp.
1590
1593
.
193.
Jang
,
Y.
,
Kim
,
J.
, and
Byun
,
D.
,
2013
, “
Invisible Metal-Grid Transparent Electrode Prepared by Electrohydrodynamic (EHD) Jet Printing
,”
J. Phys. D: Appl. Phys.
,
46
(
15
), p.
155103
.
194.
Teguh Yudistira
,
H.
,
Pradhipta Tenggara
,
A.
,
Dat Nguyen
,
V.
,
Teun Kim
,
T.
,
Dian Prasetyo
,
F.
,
Choi
,
C.-G.
,
Choi
,
M.
, and
Byun
,
D.
,
2013
, “
Fabrication of Terahertz Metamaterial With High Refractive Index Using High-Resolution Electrohydrodynamic Jet Printing
,”
Appl. Phys. Lett.
,
103
(
21
), p.
211106
.
195.
Kress
,
S. J.
,
Richner
,
P.
,
Jayanti
,
S. V.
,
Galliker
,
P.
,
Kim
,
D. K.
,
Poulikakos
,
D.
, and
Norris
,
D. J.
,
2014
, “
Near-Field Light Design With Colloidal Quantum Dots for Photonics and Plasmonics
,”
Nano Lett.
,
14
(
10
), pp.
5827
5833
.
196.
Sutanto
,
E.
,
Tan
,
Y.
,
Onses
,
M. S.
,
Cunningham
,
B. T.
, and
Alleyne
,
A.
,
2014
, “
Electrohydrodynamic Jet Printing of Micro-Optical Devices
,”
Manuf. Lett.
,
2
(
1
), pp.
4
7
.
197.
Vespini
,
V.
,
Coppola
,
S.
,
Todino
,
M.
,
Paturzo
,
M.
,
Bianco
,
V.
,
Grilli
,
S.
, and
Ferraro
,
P.
,
2016
, “
Forward Electrohydrodynamic Inkjet Printing of Optical Microlenses on Microfluidic Devices
,”
Lab Chip
,
16
(
2
), pp.
326
333
.
198.
Onses
,
M. S.
,
Ramírez-Hernández
,
A.
,
Hur
,
S.-M.
,
Sutanto
,
E.
,
Williamson
,
L.
,
Alleyne
,
A. G.
,
Nealey
,
P. F.
,
De Pablo
,
J. J.
, and
Rogers
,
J. A.
,
2014
, “
Block Copolymer Assembly on Nanoscale Patterns of Polymer Brushes Formed by Electrohydrodynamic Jet Printing
,”
ACS Nano
,
8
(
7
), pp.
6606
6613
.
199.
Korkut
,
S.
,
Saville
,
D. A.
, and
Aksay
,
I. A.
,
2008
, “
Collodial Cluster Arrays by Electrohydrodynamic Printing
,”
Langmuir
,
24
(
21
), pp.
12196
12201
.
You do not currently have access to this content.