One of the limitations of commercially available metal additive manufacturing (AM) processes is the minimum feature size most processes can achieve. A proposed solution to bridge this gap is microscale selective laser sintering (μ-SLS). The advent of this process creates a need for models which are able to predict the structural properties of sintered parts. While there are currently a number of good SLS models, the majority of these models predict sintering as a melting process which is accurate for microparticles. However, when particles tend to the nanoscale, sintering becomes a diffusion process dominated by grain boundary and surface diffusion between particles. As such, this paper presents an approach to model sintering by tracking the diffusion between nanoparticles on a bed scale. Phase field modeling (PFM) is used in this study to track the evolution of particles undergoing sintering. Changes in relative density are then calculated from the results of the PFM simulations. These results are compared to experimental data obtained from furnace heating done on dried copper nanoparticle inks, and the simulation constants are calibrated to match physical properties.

References

1.
Govett
,
T.
,
Kim
,
K.
,
Lundin
,
M.
, and
Pinero
,
D.
,
2012
, “
Design Rules for Selective Laser Sintering
,” Mechanical Engineering Design Projects Program, The University of Texas, Austin, TX, accessed Oct. 19, 2018, https://www.me.utexas.edu/~ppmdlab/files/designers.guide.sls.pdf
2.
Sager
,
B.
, and
Rosen
,
D.
, 2002,
Stereolithography Process Resolution
,
Georgia Institute of Technology
, Atlanta, GA.
3.
Roy
,
N. K.
,
Foong
,
C. S.
, and
Cullinan
,
M. A.
,
2016
, “
Design of a Micro-Scale Selective Laser Sintering System
,”
Annual International Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 8–10, pp. 1495–1508.http://sffsymposium.engr.utexas.edu/sites/default/files/2016/120-Roy.pdf
4.
Roy
,
N.
,
Yuksel
,
A.
, and
Cullinan
,
M.
,
2016
, “
Design and Modeling of a Microscale Selective Laser Sintering System
,”
ASME
Paper No. MSEC2016-8569.
5.
Roy
,
N.
,
Dibua
,
O.
,
Foong
,
C. S.
, and
Cullinan
,
M.
,
2017
, “
Preliminary Results on the Fabrication of Interconnect Structures Using Microscale Selective Laser Sintering
,”
ASME
Paper No. IPACK2017-74173.
6.
Nelson
,
C.
,
McAlea
,
K.
, and
Gray
,
D.
,
1995
, “
Improvements in SLS Part Accuracy
,”
Annual International Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 7–9, pp.
159
169
.
7.
Dong
,
L.
,
Makradi
,
A.
,
Ahzi
,
S.
, and
Remond
,
Y.
,
2009
, “
Three-Dimensional Transient Finite Element Analysis of the Selective Laser Sintering Process
,”
J. Mater. Process. Technol.
,
209
(
2
), pp.
700
706
.
8.
Moser
,
D.
,
Cullinan
,
M.
, and
Murthy
,
J.
,
2016
, “
Particle-Scale Melt Modeling of the Selective Laser Melting Process
,”
27th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
, Austin, TX, Aug. 8–10, pp.
247
256
.http://sffsymposium.engr.utexas.edu/sites/default/files/2016/017-Moser.pdf
9.
Moser
,
D.
,
Fish
,
S.
,
Beaman
,
J.
, and
Murthy
,
J.
,
2014
, “
Multi-Layer Computational Modeling of Selective Laser Sintering Processes
,”
ASME
Paper No. IMECE2014-37535.
10.
Ko
,
S. H.
, and
Grigoropoulos
,
C. P.
,
2008
, “
The Solid-State Neck Growth Mechanisms in Low Energy Laser Sintering of Gold Nanoparticles: A Molecular Dynamics Simulation Study
,”
ASME J. Heat Transfer
,
130
(
9
), p.
092404
.
11.
Ding
,
L.
,
Davidchack
,
L. R.
, and
Pan
,
J.
,
2009
, “
A Molecular Dynamics Study of Sintering Between Nanoparticles
,”
Comput. Mater. Sci.
,
45
(
2
), pp.
247
256
.
12.
Cheng
,
B.
, and
Ngan
,
H. W. A.
,
2013
, “
The Sintering and Densification Behavior of Many Copper Nanoparticles: A Molecular Dynamics Study
,”
Comput. Mater. Sci.
,
74
, pp.
1
11
.
13.
Rojek
,
J.
,
Nosewicz
,
S.
,
Pietrzak
,
K.
, and
Chmielewski
,
M.
,
2013
, “
Simulation of Powder Sintering Using a Discrete Element Model
,”
Acta Mechanica et Automatica
,
7
(3), pp.
175
179
.
14.
Wang
,
U. Y.
,
2006
, “
Computer Modeling and Simulation of Solid-State Sintering: A Phase Field Approach
,”
Acta Mater.
,
54
(
4
), pp.
953
961
.
15.
Shinagawa
,
K.
,
2014
, “
Simulation of Grain Growth and Sintering Process by Combined Phase-Field/Discrete Element Method
,”
Acta Mater.
,
66
, pp.
360
369
.
16.
Kumar
,
V.
,
2011
, “
Simulations and Modeling of Unequal Sized Particles Sintering
,”
Ph. D. dissertation
, The University of Utah, Salt Lake City, UT.http://cdmbuntu.lib.utah.edu/utils/getfile/collection/etd3/id/273/filename/611.pdf
17.
Moelans
,
N.
,
Blanpain
,
B.
, and
Wollants
,
P.
,
2008
, “
An Introduction to Phase-Field Modeling of Microstructure Evolution
,”
Comput. Coupling Phase Diagrams Thermochem.
,
32
(
2
), pp.
268
294
.
18.
Chockalingam
,
K.
,
Kouznetsova
,
V. G.
,
van der Sluis
,
O.
, and
Geers
,
M. G. D.
,
2016
, “
2D Phase Field Modeling of Sintering of Silver Nanoparticles
,”
Comput. Methods Appl. Mech. Eng.
,
312
, pp.
492
508
.
19.
Cahn
,
J. W.
, and
Hilliard
,
J. E.
,
1958
, “
Free Energy of a Nonuniform System—Part I: Interfacial Free Energy
,”
J. Chem. Phys.
,
28
(
2
), pp.
258
267
.
20.
Cahn
,
J. W.
,
1961
, “
On Spinodal Decomposition
,”
Acta Metall.
,
9
(9), pp.
81
87
.
21.
Ginzburgh
,
V. L.
, and
Landau
,
L. D.
,
1950
, “
On the Theory of Superconductivity
,” JETP,
20
, pp.
1064
1082
.
22.
Yuksel
,
A.
, and
Cullinan
,
M.
,
2016
, “
Modeling of Nanoparticle Agglomeration and Powder Bed Formation in Microscale Selective Laser Sintering Systems
,”
Addit. Manuf.
,
12
, pp.
204
215
.
23.
Clark
,
I.
,
2017
, “
CI-005_Data_Sheet_2017
,” Intrinsiq Materials, Hampshire, UK.
24.
Deng
,
J.
,
2012
, “
A Phase Field Model of Sintering With Direction-Dependent Diffusion
,”
Mater. Trans.
,
53
(
2
), pp.
385
389
.
25.
Zhang
,
D.
,
Weng
,
G.
,
Gong
,
S.
, and
Zhou
,
D.
,
2003
, “
The Kinetics of Initial Stage in Sintering Process of BaTiO3-Based PTCR Ceramics and Its Computer Simulation
,”
Mater. Sci. Eng. B
,
99
(
1–3
), pp.
88
92
.
26.
Hoehne
,
K.
, and
Sizmann
,
R.
,
1971
, “
Volume and Surface Self-Diffusion Measurements on Copper by Thermal Surface Smoothing
,”
Phys. Status Solidi
,
5
(
3
), pp.
577
589
.
You do not currently have access to this content.