Vitrification is an effective way for the cryopreservation of cells and tissues. The critical cooling rates for vitrification solution are relatively high. It is reported that nanoparticles can improve the heat transfer properties of solutions. To increase the heat transfer coefficient of aqueous cryoprotectant solutions, Hydroxyapatite (HA) nanoparticles were added into Polyvinylpyrrolidone (PVP) solutions (50%, 55%, and 60%, w/w). The glass-transition temperature, devitrification temperature, and specific heat of PVP aqueous solutions with/without HA nanoparticles (0.1%, 0.5%, and 1%, w/w) were measured by a differential scanning calorimeter at a cooling rate of 20°C/min and a warming rate of 10°C/min. The change in density of the above solutions with temperature was determined by using a straw that can reveal the volume change of solutions. The thermal conductivity was calculated based on the experimental data. A device that can be used to measure the thermal conductivity of vitrification solutions with/without nanoparticles was developed in this study. The results showed that the glass-transition temperature, devitrification temperature, and specific heat of PVP aqueous solutions with HA nanoparticles are larger than those without HA nanoparticles. The thermal conductivity of solutions with HA nanoparticles is larger than those without HA nanoparticles at a specific temperature. The lower the temperature, the smaller the difference in thermal conductivity between the solutions with and without HA nanoparticles. The calculated thermal conductivity meets the measured data well.

1.
Maxwall
,
J. C.
, and
Maxwell
,
A. C.
, 1954,
A Treatise on Electricity and Magnetism
, 3rd ed.,
Dover
,
New York
, Vol.
1
, p.
435
.
2.
Choi
,
S. U. S.
, 1995,
Developments and Applications of Non-Newtonian Flows
,
FED
,
New York
, Vol.
231
, p.
99
.
3.
Lee
,
S.
,
Choi
,
U. S.
, and
Eastman
,
J. A.
, 1999, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
280
289
.
4.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
78
, pp.
718
720
.
5.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
, 2001, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
0003-6951,
79
, pp.
2252
2254
.
6.
Wang
,
X.
,
Xu
,
X.
, and
Choi
,
S. U. S.
, 1999, “
Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
J. Thermophys. Heat Transfer
0887-8722,
13
, pp.
474
480
.
7.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
,
Liu
,
Y.
,
Ai
,
F.
, and
Wu
,
Q.
, 2002, “
Thermal Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles
,”
J. Appl. Phys.
0021-8979,
91
, pp.
4568
4572
.
8.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2004, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
84
(
21
), pp.
4316
4318
.
9.
Yu
,
W.
, and
Choi
,
S. U. S.
, 2003, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,”
J. Nanopart. Res.
1388-0764,
5
, pp.
167
171
.
10.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 2002,
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
855
863
.
11.
Einstein
,
A.
, 1956,
Investigation on the Theory of Brownian Movement
,
Dover
,
New York
.
12.
Yu
,
J.
,
Richter
,
A. G.
,
Datta
,
A.
,
Durbin
,
M. K.
, and
Dutta
,
P.
, 1999, “
Observation of Molecular Layering in Thin Liquid Films Using X-ray Reflectivity
,”
Phys. Rev. Lett.
0031-9007,
82
, pp.
2326
2329
.
13.
Di Marzio
,
E. A.
, and
Arthur
,
J. M. Y.
, 1997, “
Configurational Entropy Approach to the Kinetics of Glasses
,”
J. Res. Natl. Inst. Stand. Technol.
1044-677X,
102
, pp.
135
157
.
14.
Fletcher
,
N. Y.
, 1958, “
Size Effect in Heterogeneous Nucleation
,”
J. Chem. Phys.
0021-9606,
29
, pp.
572
576
.
15.
Burke
,
M. J.
, and
Lindow
,
S. E.
, 1990, “
Surface Properties and Size of the Ice Nucleation Site in Ice Nucleation Active Bacteria: Theoretical Considerations
,”
Cryobiology
0011-2240,
27
, pp.
80
84
.
16.
Han
,
X.
,
Ma
,
H. B.
,
Wilson
,
C.
, and
Critser
,
J. K.
, 2008, “
Effects of Nanoparticles on the Nucleation and Devitrification Temperatures of Polyol Cryoprotectant Solutions
,”
Microfluid. Nanofluid.
1613-4982,
4
, pp.
357
361
.
17.
Peiying
,
G.
, and
Jiangbo
,
L.
, 2007,
Chemical Physics
,
Science
,
Beijing
.
You do not currently have access to this content.