Scaffolds play an important role in tissue engineering by providing structural framework and a surface for cells to attach, proliferate, and secrete extracellular matrix (ECM). In order to enable efficient tissue formation, delivering sufficient cells into the scaffold three-dimensional (3D) matrix using traditional static and dynamic seeding methods continues to be a critical challenge. In this study, we investigate a new cell delivery approach utilizing deposition of hydrogel-cell encapsulated microspheroids into polycaprolactone (PCL) scaffolds to improve the seeding efficiency. Three-dimensional-bioplotted PCL constructs (0 deg/90 deg lay down, 284 ± 6 μm strand width, and 555 ± 8 μm strand separation) inoculated with MG-63 model bone cells encapsulated within electrostatically generated calcium-alginate microspheroids (Ø 405 ± 13 μm) were evaluated over seven days in static culture. The microspheroids were observed to be uniformly distributed throughout the PCL scaffold cross section. Encapsulated cells remained viable within the constructs over the test interval with the highest proliferation noted at day 4. This study demonstrates the feasibility of the new approach and highlights the role and critical challenges to be addressed to successfully utilize 3D-bioprinting for microencapsulated cell delivery.

References

1.
Paine
,
G. F.
,
Bentley
,
W. E.
,
Sun
,
W.
, and
Forgacs
,
G.
,
2013
, “
Biofabrication
,”
Encyclopedia of Biophysics
,
G. C. K. Roberts
,
ed.
, Springer, Berlin, pp. 193–194.
2.
Berthiaume
,
F.
,
Maguire
,
T. J.
, and
Yarmush
,
M. L.
,
2011
, “
Tissue Engineering and Regenerative Medicine: History, Progress, and Challenges
,”
Annu. Rev. Chem. Biomol. Eng.
,
2
, pp.
403
430
.
3.
Shuai
,
C.
,
Mao
,
Z.
, and
Han
,
Z.
,
2014
, “
Fabrication and Characterization of Calcium Silicate Scaffolds for Tissue Engineering
,”
J. Mech. Med. Biol.
,
14
(
4
), p.
1450049
.
4.
Chen
,
C. H.
,
Shyu
,
V. B.
, and
Chen
,
J. P.
,
2014
, “
Selective Laser Sintered Poly-Epsilon-Caprolactone Scaffold Hybridized With Collagen Hydrogel for Cartilage Tissue Engineering
,”
Biofabrication
,
6
(
1
), p.
015004
.
5.
Tanodekaew
,
S.
,
Channasanon
,
S.
, and
Kaewkong
,
P.
,
2013
, “
PLA-HA Scaffolds: Preparation and Bioactivity
,”
Proc. Eng.
,
59
, pp.
144
149
.
6.
Elomaa
,
L.
,
Teixeira
,
S.
, and
Hakala
,
R.
,
2011
, “
Preparation of Poly(Ε-Caprolactone)-Based Tissue Engineering Scaffolds by Stereolithography
,”
Acta Biomater.
,
7
(
11
), pp.
3850
3856
.
7.
Jensen
,
J.
,
Rolfing
,
J. H.
, and
Le
,
D. Q.
,
2014
, “
Surface-Modified Functionalized Polycaprolactone Scaffolds for Bone Repair: In Vitro and In Vivo Experiments
,”
J. Biomed. Mater. Res. A
,
102
(
9
), pp.
2993
3003
.
8.
Korpela
,
J.
,
Kokkari
,
A.
, and
Korhonen
,
H.
,
2013
, “
Biodegradable and Bioactive Porous Scaffold Structures Prepared Using Fused Deposition Modeling
,”
J. Biomed. Mater. Res. B
,
101
(
4
), pp.
610
619
.
9.
Ragaert
,
K.
,
De Somer
,
F.
, and
Van de Velde
,
S.
,
2013
, “
Methods for Improved Flexural Mechanical Properties of 3D-Plotted PCL-Based Scaffolds for Heart Valve Tissue Engineering
,”
Stroj. Vestn.
,
59
(
11
), pp.
669
676
.
10.
Rücker
,
M.
,
Laschke
,
M. W.
, and
Junker
,
D.
,
2008
, “
Vascularization and Biocompatibility of Scaffolds Consisting of Different Calcium Phosphate Compounds
,”
J. Biomed. Mater. Res. A
,
86
(
4
), pp.
1002
1011
.
11.
Rücker
,
M.
,
Laschke
,
M. W.
, and
Junker
,
D.
,
2006
, “
Angiogenic and Inflammatory Response to Biodegradable Scaffolds in Dorsal Skinfold Chambers of Mice
,”
Biomaterials
,
27
(
29
), pp.
5027
5038
.
12.
Sheshadri
,
P.
, and
Shirwaiker
,
R. A.
,
2015
, “
Characterization of Material–Process–Structure Interactions in the 3D-Bioplotting of Polycaprolactone
,”
3D Print. Addit. Manuf.
,
2
(
1
), pp.
20
31
.
13.
Kim
,
J. Y.
,
Yoon
,
J. J.
, and
Park
,
E. K.
,
2009
, “
Cell Adhesion and Proliferation Evaluation of SFF-Based Biodegradable Scaffolds Fabricated Using a Multi-Head Deposition System
,”
Biofabrication
,
1
(
1
), p.
015002
.
14.
Villalona
,
G. A.
,
Udelsman
,
B.
, and
Duncan
,
D. R.
,
2010
, “
Cell-Seeding Techniques in Vascular Tissue Engineering
,”
Tissue Eng. Part B
,
16
(
3
) pp.
341
350
.
15.
Fedorovich
,
N. E.
,
Alblas
,
J.
, and
de Wijn
,
J. R.
,
2007
, “
Hydrogels as Extracellular Matrices for Skeletal Tissue Engineering: State-of-the-Art and Novel Application in Organ Printing
,”
Tissue Eng.
,
13
(
8
), pp.
1905
1925
.
16.
Abbott
,
A.
,
2003
, “
Cell Culture: Biology's New Dimension
,”
Nature
,
424
(
6951
), pp.
870
872
.
17.
Bokhari
,
M. A.
,
Akay
,
G.
, and
Zhang
,
S.
,
2005
, “
The Enhancement of Osteoblast Growth and Differentiation In Vitro on a Peptide Hydrogel—polyHIPE Polymer Hybrid Material
,”
Biomaterials
,
26
(
25
), pp.
5198
5208
.
18.
Dixit
,
V.
,
Darvasi
,
R.
, and
Arthur
,
M.
,
1990
, “
Restoration of Liver Function in Gunn Rats Without Immunosuppression Using Transplanted Microencapsulated Hepatocytes
,”
Hepatology
,
12
(
6
), pp.
1342
1349
.
19.
Maguire
,
T.
,
Novik
,
E.
, and
Schloss
,
R.
,
2006
, “
Alginate-PLL Microencapsulation: Effect on the Differentiation of Embryonic Stem Cells Into Hepatocytes
,”
Biotechnol. Bioeng.
,
93
(
3
), pp.
581
591
.
20.
Lim
,
F.
, and
Sun
,
A.
,
1980
, “
Microencapsulated Islets as Bioartificial Endocrine Pancreas
,”
Science
,
210
(
4472
), pp.
908
910
.
21.
De Vos
,
P.
,
Faas
,
M. M.
, and
Strand
,
B.
,
2006
, “
Alginate-Based Microcapsules for Immunoisolation of Pancreatic Islets
,”
Biomaterials
,
27
(
32
), pp.
5603
5617
.
22.
Maysinger
,
D.
,
Berezovskaya
,
O.
, and
Fedoroff
,
S.
,
1996
, “
The Hematopoietic Cytokine Colony Stimulating Factor 1 Is Also a Growth Factor in the CNS: (II) Microencapsulated CSF-1 and LM-10 Cells as Delivery Systems
,”
Exp. Neurol.
,
141
(
1
), pp.
47
56
.
23.
Winn
,
S. R.
,
Tresco
,
P. A.
, and
Zielinski
,
B.
,
1991
, “
Behavioral Recovery Following Intrastriatal Implantation of Microencapsulated PC12 Cells
,”
Exp. Neurol.
,
113
(
3
), pp.
322
329
.
24.
Cheng
,
H. W.
,
Tsui
,
Y. K.
, and
Cheung
,
K. M.
,
2009
, “
Decellularization of Chondrocyte-Encapsulated Collagen Microspheres: A Three-Dimensional Model to Study the Effects of Acellular Matrix on Stem Cell Fate
,”
Tissue Eng. Part C
,
15
(
4
), pp.
697
706
.
25.
Loty
,
S.
,
Sautier
,
J.
, and
Loty
,
C.
,
1998
, “
Cartilage Formation by Fetal Rat Chondrocytes Cultured in Alginate Beads: A Proposed Model for Investigating Tissue–Biomaterial Interactions
,”
J. Biomed. Mater. Res.
,
42
(
2
), pp.
213
222
.
26.
Kaul
,
G.
,
Cucchiarini
,
M.
, and
Arntzen
,
D.
,
2006
, “
Local Stimulation of Articular Cartilage Repair by Transplantation of Encapsulated Chondrocytes Overexpressing Human Fibroblast Growth Factor 2 (FGF-2) In Vivo
,”
J. Gene Med.
,
8
(
1
), pp.
100
111
.
27.
Pautke
,
C.
,
Schieker
,
M.
, and
Tischer
,
T.
,
2004
, “
Cell Lines MG-63, Saos-2 and U-2 OS in Comparison to Human Osteoblasts
,”
Anticancer Res.
,
24
(
6
), pp.
3743
3748
.
28.
Keshaw
,
H.
,
Forbes
,
A.
, and
Day
,
R. M.
,
2005
, “
Release of Angiogenic Growth Factors From Cells Encapsulated in Alginate Beads With Bioactive Glass
,”
Biomaterials
,
26
(
19
), pp.
4171
4179
.
29.
Bian
,
L.
,
Zhai
,
D. Y.
, and
Tous
,
E.
,
2011
, “
Enhanced MSC Chondrogenesis Following Delivery of TGF-Β3 From Alginate Microspheres Within Hyaluronic Acid Hydrogels In Vitro and In Vivo
,”
Biomaterials
,
32
(
27
), pp.
6425
6434
.
30.
Lewis
,
A.
, and
Colton
,
C. K.
,
2007
,
Principles of Tissue Engineering
, 3rd ed.,
Academic Press
,
Burlington, VT
, pp.
405
418
.
31.
Croll
,
T. I.
,
Gentz
,
S.
, and
Mueller
,
K.
,
2005
, “
Modeling Oxygen Diffusion and Cell Growth in a Porous, Vascularising Scaffold for Soft Tissue Engineering Applications
,”
Chem. Eng. Sci.
,
60
(
17
), pp.
4924
4934
.
32.
Volkmer
,
E.
,
Drosse
,
I.
, and
Otto
,
S.
,
2008
, “
Hypoxia in Static and Dynamic 3D Culture Systems for Tissue Engineering of Bone
,”
Tissue Eng. Part A
,
14
(
8
), pp.
1331
1340
.
33.
Jaasma
,
M. J.
,
Plunkett
,
N. A.
, and
O'Brien
,
F. J.
,
2008
, “
Design and Validation of a Dynamic Flow Perfusion Bioreactor for Use With Compliant Tissue Engineering Scaffolds
,”
J. Biotechnol.
,
133
(
4
), pp.
490
496
.
You do not currently have access to this content.