Being a natural polymer, DNA attracts extensive attention and possesses great potential to open a new way for researches of biomedical or material science. In the past few decades, approaches have been developed to bring DNA into the realm of bulk materials. In this review, we discussed the progresses achieved for fabrication of novel materials with a large physical dimension from the DNA polymer.
Issue Section:
Engineering Cell Microenvironment Using Novel Hydrogels
References
1.
Amiya
, T.
, and Tanaka
, T.
, 1987
, “Phase Transitions in Crosslinked Gels of Natural Polymers
,” Macromolecules
, 20
(5
), pp. 1162
–1164
.2.
Costa
, D.
, Valente
, A. J.
, Miguel
, M. G.
, and Queiroz
, J.
, 2011
, “Gel Network Photodisruption: A New Strategy for the Codelivery of Plasmid DNA and Drugs
,” Langmuir
, 27
(22
), pp. 13780
–13789
.3.
Costa
, D.
, Queiroz
, J.
, Miguel
, M. G.
, and Lindman
, B.
, 2012
, “Swelling Behavior of a New Biocompatible Plasmid DNA Hydrogel,” Colloids Surf., B
, 92
, pp. 106
–112
.4.
Topuz
, F.
, and Okay
, O.
, 2009
, “Formation of Hydrogels by Simultaneous Denaturation and Cross-Linking of DNA,” Biomacromolecules
, 10
(9
), pp. 2652
–2661
.5.
Costa
, D.
, Miguel
, M. G.
, and Lindman
, B.
, 2010
, “Swelling Properties of Cross-Linked DNA Gels,”Adv. Colloid Interface Sci.
, 158
(1–2), pp. 21
–31
.6.
Guo
, W.
, Qi
, X. J.
, Orbach
, R.
, Lu
, C. H.
, Freage
, L.
, Mironi-Harpaz
, I.
, Seliktar
, D.
, Yang
, H. H.
, and Willner
, I.
, 2014
, “Reversible Ag+-Crosslinked DNA Hydrogels,” Chem. Commun.
, 50
(31
), pp. 4065
–4068
.7.
Tang
, H.
, Duan
, X.
, Feng
, X.
, Liu
, L.
, Wang
, S.
, Li
, Y.
, and Zhu
, D.
, 2009
, “Fluorescent DNA–Poly(phenylenevinylene) Hybrid Hydrogels for Monitoring Drug Release,” Chem. Commun.
, 6
, pp. 641
–643
.8.
Lee
, C. K.
, Shin
, S. R.
, Lee
, S. H.
, Jeon
, J. H.
, So
, I.
, Kang
, T. M.
, Kim
, S. I.
, Mun
, J. Y.
, Han
, S. S.
, Spinks
, G. M.
, Wallace
, G. G.
, and Kim
, S. J.
, 2008
, “DNA Hydrogel Fiber With Self-Entanglement Prepared by Using an Ionic Liquid,” Angew. Chem., Int. Ed. Engl.
, 47
(13
), pp. 2470
–2474
.9.
Um
, S. H.
, Lee
, J. B.
, Park
, N.
, Kwon
, S. Y.
, Umbach
, C. C.
, and Luo
, D.
, 2006
, “Enzyme-catalysed assembly of DNA Hydrogel,” Nat. Mater.
, 5
(10
), pp. 797
–801
.10.
Park
, N.
, Um
, S. H.
, Funabashi
, H.
, Xu
, J.
, and Luo
, D.
, 2009
, “A Cell-Free Protein-Producing Gel,” Nat. Mater.
, 8
(5
), pp. 432
–437
.11.
Li
, C.
, Chen
, P.
, Shao
, Y.
, Zhou
, X.
, Wu
, Y.
, Yang
, Z.
, Li
, Z.
, Weil
, T.
, and Liu
, D.
, 2015
, “A Writable Polypeptide–DNA Hydrogel with Rationally Designed Multi-modification Sites,” Small
, 11
(9–10), pp. 1138
–1143
.12.
Zhang
, L.
, Lei
, J.
, Liu
, L.
, Li
, C.
, and Ju
, H.
, 2013
, “Self-Assembled DNA Hydrogel as Switchable Material for Aptamer-Based Fluorescent Detection of Protein,” Anal. Chem.
, 85
(22
), pp. 11077
–11082
.13.
Shin
, S. W.
, Park
, K. S.
, Jang
, M. S.
, Song
, W. C.
, Kim
, J.
, Cho
, S. W.
, Lee
, J. Y.
, Cho
, J. H.
, Jung
, S.
, and Um
, S. H.
, 2015
, “X-DNA Origami-Networked Core-Supported Lipid Stratum,” Langmuir
, 31
(3
), pp. 912
–916
.14.
Seeman
, N. C.
, 1982
, “Nucleic Acid Junctions and Lattices,” J. Theor. Biol.
, 99
(2
), pp. 237
–247
.15.
Winfree
, E.
, Liu
, F.
, Wenzler
, L. A.
, and Seeman
, N. C.
, 1998
, “Design and Self-Assembly of Two-Dimensional DNA Crystals,” Nature
, 394
(6693
), pp. 539
–544
.16.
Endo
, M.
, and Sugiyama
, H.
, 2011
, Current Protocols in Nucleic Acid Chemistry
, Wiley, New York, Chap. 12.17.
Rothemund
, P. W.
, 2006
, “Folding DNA to Create Nanoscale Shapes and Patterns,” Nature
, 440
(7082
), pp. 297
–302
.18.
Zhang
, D. Y.
, Hariadi
, R. F.
, Choi
, H. M.
, and Winfree
, E.
, 2013
, “Integrating DNA Strand-Displacement Circuitry With DNA Tile Self-Assembly,” Nat. Commun.
, 4
, pp. 1965
–1975
.19.
Ke
, Y.
, Ong
, L. L.
, Sun
, W.
, Song
, J.
, Dong
, M.
, Shih
, W. M.
, and Yin
, P.
, 2014
, “DNA Brick Crystals With Prescribed Depths,” Nat. Chem.
, 6
(11
), pp. 994
–1002
.20.
Martin
, J. P.
, Paille
, P.
, Caveriviere
, P.
, Galaup
, J. L.
, Fournie
, A.
, and Gouzi
, J. L.
, 1990
, “Giant Uterine Leiomyoma and Pregnancy. Clinical, Radiologic, Unusual Histopathologic Aspects,” J. Gynecol., Obstet. Biol. Reprod.
, 19
, pp. 315
–320
.21.
Endo
, M.
, Sugita
, T.
, Rajendran
, A.
, Katsuda
, Y.
, Emura
, T.
, Hidaka
, K.
, and Sugiyama
, H.
, 2011
, “Two-Dimensional DNA Origami Assemblies Using a Four-Way Connector,” Chem. Commun.
, 47
(11
), pp. 3213
–3215
.22.
Rajendran
, A.
, Endo
, M.
, Katsuda
, Y.
, Hidaka
, K.
, and Sugiyama
, H.
, 2011
, “Photo-Cross-Linking-Assisted Thermal Stability of DNA Origami Structures and Its Application for Higher-Temperature Self-Assembly,” J. Am. Chem. Soc.
, 133
(37
), pp. 14488
–14491
.23.
Rajendran
, A.
, Endo
, M.
, Katsuda
, Y.
, Hidaka
, K.
, and Sugiyama
, H.
, 2011
, “Programmed Two-Dimensional Self-Assembly of Multiple DNA Origami Jigsaw Pieces,” ACS Nano
, 5
(1
), pp. 665
–671
.24.
Jungmann
, R.
, Scheible
, M.
, Kuzyk
, A.
, Pardatscher
, G.
, Castro
, C. E.
, and Simmel
, F. C.
, 2011
, “DNA Origami-Based Nanoribbons: Assembly, Length Distribution, and Twist,” Nanotechnology
, 22
(27
), p. 275301
.25.
Iinuma
, R.
, Ke
, Y.
, Jungmann
, R.
, Schlichthaerle
, T.
, Woehrstein
, J. B.
, and Yin
, P.
, 2014
, “Polyhedra Self-Assembled from DNA Tripods and Characterized With 3D DNA-PAINT,” Science
, 344
(6179
), pp. 65
–69
.26.
Zhang
, H.
, Chao
, J.
, Pan
, D.
, Liu
, H.
, Huang
, Q.
, and Fan
, C.
, 2012
, “Folding Super-Sized DNA Origami With Scaffold Strands From Long-Range PCR,” Chem. Commun.
, 48
(51
), pp. 6405
–6407
.27.
Marchi
, A. N.
, Saaem
, I.
, Vogen
, B. N.
, Brown
, S.
, and LaBean
, T. H.
, 2014
, “Toward Larger DNA Origami,” Nano Lett.
, 14
(10
), pp. 5740
–5747
.28.
Zadeh
, J. N.
, Steenberg
, C. D.
, Bois
, J. S.
, Wolfe
, B. R.
, Pierce
, M. B.
, Khan
, A. R.
, Dirks
, R. M.
, and Pierce
, N. A.
, 2011
, “NUPACK: Analysis and Design of Nucleic Acid Systems,” J. Comput. Chem.
, 32
(1
), pp. 170
–173
.29.
Sharma
, J.
, Chhabra
, R.
, Cheng
, A.
, Brownell
, J.
, Liu
, Y.
, and Yan
, H.
, 2009
, “Control of Self-Assembly of DNA Tubules Through Integration of Gold Nanoparticles,” Science
, 323
(5910
), pp. 112
–116
.30.
Maune
, H. T.
, Han
, S. P.
, Barish
, R. D.
, Bockrath
, M.
, Goddard
, W. A.
, III, Rothemund
, P. W.
, and Winfree
, E.
, 2010
, “Self-Assembly of Carbon Nanotubes Into Two-Dimensional Geometries Using DNA Origami Templates,” Nat. Nanotechnol.
, 5
(1
), pp. 61
–66
.31.
Tu
, X.
, Manohar
, S.
, Jagota
, A.
, and Zheng
, M.
, 2009
, “DNA Sequence Motifs for Structure-Specific Recognition and Separation of Carbon Nanotubes,” Nature
, 460
(7252
), pp. 250
–253
.32.
Hazarika
, P.
, Ceyhan
, B.
, and Niemeyer
, C. M.
, 2004
, “Reversible Switching of DNA–Gold Nanoparticle Aggregation,” Angew. Chem., Int. Ed. Engl.
, 43
(47
), pp. 6469
–6471
.33.
Niemeyer
, C. M.
, Ceyhan
, B.
, and Hazarika
, P.
, 2003
, “Oligofunctional DNA–Gold Nanoparticle Conjugates,” Angew. Chem., Int. Ed. Engl.
, 42
(46
), pp. 5766
–5770
.34.
Macfarlane
, R. J.
, Lee
, B.
, Hill
, H. D.
, Senesi
, A. J.
, Seifert
, S.
, and Mirkin
, C. A.
, 2009
, “Assembly and Organization Processes in DNA-Directed Colloidal Crystallization,” Proc. Natl. Acad. Sci. U. S. A.
, 106
(26
), pp. 10493
–10498
.35.
Soto
, C. M.
, Srinivasan
, A.
, and Ratna
, B. R.
, 2002
, “Controlled Assembly of Mesoscale Structures Using DNA as Molecular Bridges,” J. Am. Chem. Soc.
, 124
(29
), pp. 8508
–8509
.36.
Mirkin
, C. A.
, Letsinger
, R. L.
, Mucic
, R. C.
, and Storhoff
, J. J.
, 1996
, “A DNA-Based Method for Rationally Assembling Nanoparticles Into Macroscopic Materials,” Nature
, 382
(6592
), pp. 607
–609
.37.
Hsiao
, S. C.
, Shum
, B. J.
, Onoe
, H.
, Douglas
, E. S.
, Gartner
, Z. J.
, Mathies
, R. A.
, Bertozzi
, C. R.
, and Francis
, M. B.
, 2009
, “Direct Cell Surface Modification with DNA for the Capture of Primary Cells and the Investigation of Myotube Formation on Defined Patterns,” Langmuir
, 25
(12
), pp. 6985
–6991
.38.
Gartner
, Z. J.
, and Bertozzi
, C. R.
, 2009
, “Programmed Assembly of 3-Dimensional Microtissues With Defined Cellular Connectivity,” Proc. Natl. Acad. Sci. U. S. A.
, 106
(12
), pp. 4606
–4610
.39.
Douglas
, E. S.
, Chandra
, R. A.
, Bertozzi
, C. R.
, Mathies
, R. A.
, and Francis
, M. B.
, 2007
, “Self-Assembled Cellular Microarrays Patterned Using DNA Barcodes,” Lab Chip
, 7
(11
), pp. 1442
–1448
.40.
Chandra
, R. A.
, Douglas
, E. S.
, Mathies
, R. A.
, Bertozzi
, C. R.
, and Francis
, M. B.
, 2006
, “Programmable Cell Adhesion Encoded by DNA Hybridization,” Angew. Chem., Int. Ed. Engl.
, 45
(6
), pp. 896
–901
.41.
Nykypanchuk
, D.
, Maye
, M. M.
, van der Lelie
, D.
, and Gang
, O.
, 2008
, “DNA-Guided Crystallization of Colloidal Nanoparticles,” Nature
, 451
(7178
), pp. 549
–552
.42.
Xu
, Y.
, Wu
, Q.
, Sun
, Y.
, Bai
, H.
, and Shi
, G.
, 2010
, “Three-Dimensional Self-Assembly of Graphene Oxide and DNA Into Multifunctional Hydrogels,” ACS Nano
, 4
(12
), pp. 7358
–7362
.43.
Qi
, H.
, Ghodousi
, M.
, Du
, Y.
, Grun
, C.
, Bae
, H.
, Yin
, P.
, and Khademhosseini
, A.
, 2013
, “DNA-Directed Self-Assembly of Shape-Controlled Hydrogels,” Nat. Commun.
, 4
, pp. 2275
–2285
.44.
Lee
, J. B.
, Peng
, S.
, Yang
, D.
, Roh
, Y. H.
, Funabashi
, H.
, Park
, N.
, Rice
, E. J.
, Chen
, L.
, Long
, R.
, Wu
, M.
, and Luo
, D.
, 2012
, “A Mechanical Metamaterial Made From a DNA Hydrogel,” Nat. Nanotechnol.
, 7
(12
), pp. 816
–820
.45.
Zhao
, W.
, Ali
, M. M.
, Brook
, M. A.
, and Li
, Y.
, 2008
, “Rolling Circle Amplification: Applications in Nanotechnology and Biodetection With Functional Nucleic Acids,” Angew. Chem., Int. Ed. Engl.
, 47
(34
), pp. 6330
–6337
.46.
Dirks
, R. M.
, and Pierce
, N. A.
, 2004
, “Triggered Amplification by Hybridization Chain Reaction,” Proc. Natl. Acad. Sci. U. S. A.
, 101
(43
), pp. 15275
–15278
.47.
Song
, W.
, Zhu
, K.
, Cao
, Z.
, Lau
, C.
, and Lu
, J.
, 2012
, “Hybridization Chain Reaction-Based Aptameric System for the Highly Selective and Sensitive Detection of Protein,” Analyst
, 137
(6
), pp. 1396
–1401
.48.
Tomita
, N.
, Mori
, Y.
, Kanda
, H.
, and Notomi
, T.
, 2008
, “Loop-Mediated Isothermal Amplification (LAMP) of Gene Sequences and Simple Visual Detection of Products,” Nat. Protoc.
, 3
(5
), pp. 877
–882
.49.
Tao
, Z. Y.
, Zhou
, H. Y.
, Xia
, H.
, Xu
, S.
, Zhu
, H. W.
, Culleton
, R. L.
, Han
, E. T.
, Lu
, F.
, Fang
, Q.
, Gu
, Y. P.
, Liu
, Y. B.
, Zhu
, G. D.
, Wang
, W. M.
, Li
, J. L.
, Cao
, J.
, and Gao
, Q.
, 2011
, “Adaptation of A Visualized Loop-Mediated Isothermal Amplification Technique for Field Detection of Plasmodium Vivax Infection,” Parasites Vectors
, 4
(1
), pp. 115
–123
.50.
Wooldridge
, J. E.
, and Weiner
, G. J.
, 2003
, “CpG DNA and Cancer Immunotherapy: Orchestrating the Antitumor Immune Response,” Curr. Opin. Oncol.
, 15
(6
), pp. 440
–445
.51.
Dalpke
, A. H.
, and Heeg
, K.
, 2004
, “CpG-DNA as Immune Response Modifier,” Int. J. Med. Microbiol.
, 294
(5
), pp. 345
–354
.52.
Rothenfusser
, S.
, Tuma
, E.
, Wagner
, M.
, Endres
, S.
, and Hartmann
, G.
, 2003
, “Recent Advances in Immunostimulatory CpG Oligonucleotides,” Curr. Opin. Mol. Ther.
, 5
, pp. 98
–106
.53.
Blanks
, D. A.
, 2007
, “Immunostimulatory Sequences in Immunotherapy,” Curr. Opin. Otolaryngol. Head Neck Surg.
, 15
(4
), pp. 281
–285
.54.
Gibson
, D. G.
, Glass
, J. I.
, Lartigue
, C.
, Noskov
, V. N.
, Chuang
, R. Y.
, Algire
, M. A.
, Benders
, G. A.
, Montague
, M. G.
, Ma
, L.
, Moodie
, M. M.
, Merryman
, C.
, Vashee
, S.
, Krishnakumar
, R.
, Assad-Garcia
, N.
, Andrews-Pfannkoch
, C.
, Denisova
, E. A.
, Young
, L.
, Qi
, Z. Q.
, Segall-Shapiro
, T. H.
, Calvey
, C. H.
, Parmar
, P. P.
, Hutchison
, C. A.
, III, Smith
, H. O.
, and Venter
, J. C.
, 2010
, “Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome,” Science
, 329
(5987
), pp. 52
–56
.Copyright © 2016 by ASME
You do not currently have access to this content.