Abstract

A novel model-based technique is presented in this paper for the estimation of the fault size in different components of rolling contact bearings. A detailed dimensional analysis of the problem is carried out and an experimental methodology using the Box–Behnken design is applied to generate the experimental data set. First, the analysis of the vibration acceleration amplitude at fault frequency, its dependence on the bearing operating, and fault parameters using the obtained vibration data set are carried out by statistical analysis of variance. Numerical equations are developed then using the experimental data set for the correlation of the vibration acceleration amplitude in the frequency domain with the fault sizes based on the developed dimensionless terms. A hybrid backpropagation neural network integrating genetic algorithm is also developed to check the computational performance of the developed model equations. Validation of the proposed method is carried experimentally also for three seeded defect sizes on the outer race, inner race, and rolling element. The maximum model accuracy observed is for the inner race defect case with a predictive accuracy of 99.44% and for the roller defect case, it is 98.77%. The deviance observed for the model predictive performance is maximum for the outer race defect case with the least accuracy of 90.47% amongst all.

References

1.
Tandon
,
N.
, and
Choudhury
,
A.
,
1999
, “
A Review of Vibration and Acoustic Measurement Methods for the Detection of Defects in Rolling Element Bearings
,”
Tribol. Int.
,
32
(
8
), pp.
469
480
.
2.
Patil
,
M. S.
,
Mathew
,
J.
, and
RajendraKumar
,
P.K.
,
2008
, “
Bearing Signature Analysis as a Medium for Fault Detection: A Review
,”
ASME J. Tribol.
,
130
(
1
), p.
014001
.
3.
Sawalhi
,
N.
, and
Randall
,
R. B.
,
2010
, “
Vibration Response of Spalled Rolling Element Bearings: Observations, Simulations and Signal Processing Techniques to Track the Spall Size
,”
Mech. Syst. Signal Process
,
25
(
3
), pp.
846
870
.
4.
Rohani Bastami
,
A.
, and
Vahid
,
S.
,
2020
, “
Estimating the Size of Naturally Generated Defects in the Outer Ring and Roller of a Tapered Roller Bearing Based on Autoregressive Model Combined With Envelope Analysis and Discrete Wavelet Transform
,”
Measurement
,
159
(
1
), p.
107767
.
5.
Kumar
,
A.
,
Zhou
,
Y.
,
Gandhi
,
C. P.
,
Kumar
,
R.
, and
Xiang
,
J.
,
2020
, “
Bearing Defect Size Assessment Using Wavelet Transform Based Deep Convolutional Neural Network (DCNN)
,”
Alexandria Eng. J.
,
59
(
2
), pp.
999
1012
.
6.
Chen
,
A.
, and
Kurfess
,
T. R.
,
2018
, “
A New Model for Rolling Element Bearing Defect Size Estimation
,”
Measurement
,
114
(
1
), pp.
144
149
.
7.
Al-Ghamd
,
A. M.
, and
Mba
,
D.
,
2006
, “
A Comparative Experimental Study on the Use of Acoustic Emission and Vibration Analysis for Bearing Defect Identification and Estimation of Defect Size
,”
Mech. Syst. Signal Process
,
20
(
7
), pp.
1537
1571
.
8.
Luo
,
M.
,
Guo
,
Y.
,
Wu
,
X.
, and
Na
,
J.
,
2019
, “
An Analytical Model for Estimating Spalled Zone Size of Rolling Element Bearing Based on Dual-Impulse Time Separation
,”
J. Sound Vib.
,
453
(
1
), pp.
87
102
.
9.
Alian
,
H.
,
Konforty
,
S.
,
Ben-Simon
,
U.
,
Klein
,
R.
,
Tur
,
M.
, and
Bortman
,
J.
,
2019
, “
Bearing Fault Detection and Fault Size Estimation Using Fiberoptic Sensors
,”
Mech. Syst. Signal Process
,
120
(
1
), pp.
392
407
.
10.
Anil
,
K.
, and
Rajesh
,
K.
,
2017
, “
Least Square Fitting for Adaptive Wavelet Generation and Automatic Prediction of Defect Size in the Bearing Using Levenberg–Marquardt Backpropagation
,”
J. Nondestr. Eval.
,
36
(
1
), p.
7
.
11.
Bourdon
,
A.
,
Chesné
,
S.
,
André
,
H.
, and
Rémond
,
D.
,
2019
, “
Reconstruction of Angular Speed Variations in the Angular Domain to Diagnose and Quantify Taper Roller Bearing Outer Race Fault
,”
Mech. Syst. Signal Process
,
120
(
1
), pp.
1
15
.
12.
Behzad
,
M.
,
AlandiHallaj
,
A.
,
Rohani Bastami
,
A.
,
Mba
,
D.
,
Eftekharnejad
,
B.
, and
Charnley
,
B.
,
2009
, “
Defect Size Estimation in Rolling Element Bearings Using Vibration Time Waveform
,”
Insight
,
51
(
8
), pp.
426
430
.
13.
Singh
,
M.
, and
Kumar
,
R.
,
2013
, “
Thrust Bearing Groove Race Defect Measurement by Wavelet Decomposition of Pre-Processed Vibration Signal
,”
Measurement
,
46
(
9
), pp.
3508
3515
.
14.
Petersen
,
D.
,
Howard
,
C.
, and
Prime
,
Z.
,
2015
, “
Varying Stiffness and Load Distributions in Defective Ball Bearings: Analytical Formulation and Application to Defect Size Estimation
,”
J. Sound Vib.
,
337
(
1
), pp.
284
300
.
15.
Ming
,
A.
,
Zhang
,
W.
,
Qin
,
Z.
, and
Chu
,
F.
,
2015
, “
Dual-Impulse Response Model for the Acoustic Emission Produced by a Spall and the Size Evaluation in Rolling Element Bearings
,”
IEEE Trans. Ind. Electron.
,
62
(
10
), pp.
6606
6615
.
16.
Zhao
,
S. F.
,
Liang
,
L.
,
Xu
,
G. H.
,
Wang
,
J.
, and
Zhang
,
W. M.
,
2013
, “
Quantitative Diagnosis of a Spall-Like Fault of a Rolling Element Bearing by Empirical Mode Decomposition and the Approximate Entropy Method
,”
Mech. Syst. Signal Process
,
40
(
1
), pp.
154
177
.
17.
Jena
,
D. P.
, and
Panigrahi
,
S. N.
,
2014
, “
Precise Measurement of Defect Width in Tapered Roller Bearing Using Vibration Signal
,”
Measurement
,
55
(
1
), pp.
39
50
.
18.
Moustafa
,
W.
,
Cousinard
,
O.
,
Bolaers
,
F.
,
Sghir
,
K.
, and
Drop
,
J. P.
,
2016
, “
Low Speed Bearings Fault Detection and Size Estimation Using Instantaneous Angular Speed
,”
J. Vib. Control
,
22
(
15
), pp.
1
13
.
19.
Wang
,
W.
,
Sawalhi
,
N.
, and
Becker
,
A.
,
2016
, “
Size Estimation for Naturally Occurring Bearing Faults Using Synchronous Averaging of Vibration Signals
,”
ASME J. Vib. Acoust.
,
138
(
5
), p.
051015
.
20.
Gibbings
,
J. C.
,
2011
,
Dimensional Analysis
,
Springer-Verlag London Ltd
.,
London
.
21.
Desavale
,
R. G.
,
Venkatachalam
,
R.
, and
Chavan
,
S. P.
,
2013
, “
Antifriction Bearings Damage Analysis Using Experimental Data Based Models
,”
ASME J. Tribol.
,
135
(
4
), p.
041105
.
22.
Desavale
,
R. G.
,
Venkatachalam
,
R.
, and
Chavan
,
S. P.
,
2014
, “
Experimental and Numerical Studies on Spherical Roller Bearings Using Multivariable Regression Analysis
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
021022
.
23.
Jamadar
,
I. M.
, and
Vakharia
,
D. P.
,
2017
, “
A New Damage Diagnostic Approach for Deep Groove Ball Bearings Having Localized Surface Defects in the Raceways
,”
ASME J. Tribol.
,
139
(
6
), p.
061103
.
24.
Najm
,
O. S. A.
,
2012
, “
A New Method of Dimensional Analysis (Fluid Mechanics Applications)
,”
Jordan J. Civ. Eng.
,
6
(
3
), pp.
361
372
.
25.
Qing-Ming
,
T.
,
2011
,
Dimensional Analysis With Case Studies in Mechanics
,
Springer-Verlag Ltd
.,
Berlin/Heidelberg
.
26.
Thomas
,
S.
,
2007
,
Applied Dimensional Analysis and Modeling
,
Elsevier Inc.
,
New York
, pp.
163
228
.
27.
John
,
O. R.
,
Sastry
,
G. P.
, and
David
,
A. D.
,
1998
,
Applied Regression Analysis—A Research Tool
,
Springer-Verlag Inc.
,
New York
.
28.
Thomas
,
P. R.
,
2007
,
Modern Experimental Design
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
29.
Raymond
,
H. M.
,
Douglas
,
C. M.
, and
Christine
,
M. A. C.
,
2009
,
Response Surface Methodology
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
30.
Wowk
,
V.
,
1991
,
Machinery Vibrations: Measurement and Analysis
,
McGraw-Hill, Inc.
,
New York
.
31.
Chen
,
C.-H.
,
Shyu
,
R.-J.
, and
Ma
,
C.-K.
,
2007
, “
Rotating Machinery Diagnosis Using Wavelet Packets-Fractal Technology and Neural Networks
,”
J. Mech. Sci. Technol.
,
21
(
7
), pp.
1058
1065
.
32.
Samanta
,
B.
,
Al-Balushi
,
K. R.
, and
Al-Araimi
,
S. A.
,
2006
, “
Artificial Neural Networks and Genetic Algorithm for Bearing Fault Detection
,”
J. Soft Comput.
,
10
(
3
), pp.
264
271
.
33.
Huaqing
,
W.
, and
Peng
,
C.
,
2011
, “
Intelligent Diagnosis Method for Rolling Element Bearing Faults Using Possibility Theory and Neural Network
,”
Comput. Ind. Eng.
,
60
(
4
), pp.
511
518
.
34.
Simon
,
H.
,
2009
,
Neural Networks and Learning Machines
,
Pearson Education
,
Delhi, India
.
35.
Rajsekran
,
S.
, and
Vijayalakshmi Pai
,
G. A.
,
2012
,
Neural Networks, Fuzzy Logic and Genetic Algorithms—Synthesis and Applications
,
PHI Learning Pvt. Ltd
.,
New Delhi
.
36.
Harris
,
T. A.
,
1996
,
Rolling Bearing Analysis
,
John Wiley Publication
,
New York
.
37.
Rohani Bastami
,
A.
, and
Vahid
,
S.
,
2021
, “
A Comprehensive Evaluation of the Effect of Defect Size in Rolling Element Bearings on the Statistical Features of the Vibration Signal
,”
Mech. Syst. Signal Process
,
151
(
1
), p.
107334
.
You do not currently have access to this content.