Abstract

In this article, vibration-based fault diagnostics and response classification have been done for defective high-speed cylindrical bearing operating under unbalance rotor conditions. An experimental study has been performed to capture the vibration signature of faulty bearings in the time domain and for different speeds of the unbalanced rotor. Two-dimensional phase trajectories are generated by estimating the time delay and embedding dimension corresponding to vibration signatures. Qualitative analysis involves the implementation of a deep convolutional neural network (DCNN) utilizing the phase portraits as input to classify the nonlinear vibration responses. Comparison with the state-of-art classifiers such as artificial neural network (ANN), deep neural network (DNN), and k-nearest neighbor (KNN) is presented based on classification accuracy values. Thus, the values obtained are 61%, 67%, 72%, and 99% for ANN, DNN, KNN, and DCNN, respectively. Hence, the proposed intelligent classification model accurately identifies the dynamic behavior of bearing under unbalanced rotor conditions.

References

1.
Wardle
,
F. P.
, and
Poon
,
S. Y.
,
1983
, “
Rolling Bearing Noise, Cause and Cure
,”
Chart. Mech. Eng.
,
30
(
2
), pp.
36
40
.
2.
Aktürk
,
N.
, and
Gohar
,
R.
,
1998
, “
The Effect of Ball Size Variation on Vibrations Associated With Ball Bearings
,”
Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
,
212
(
2
), pp.
101
110
.
3.
Harsha
,
S. P.
,
2005
, “
Non-linear Dynamic Response of a Balanced Rotor Supported on Rolling Element Bearings
,”
Mech. Syst. Signal Process
,
19
(
3
), pp.
551
578
.
4.
Harsha
,
S. P.
,
2006
, “
Nonlinear Dynamic Response of a Balanced Rotor Supported by Rolling Element Bearings Due to Radial Internal Clearance Effect
,”
Mech. Mach. Theory
,
41
(
6
), pp.
688
706
.
5.
Rahnejat
,
H.
,
1985
, “
Computational Modelling of Problems in Contact Dynamics
,”
Eng. Anal.
,
2
(
4
), pp.
192
197
.
6.
Rahnejat
,
H.
, and
Gohar
,
R.
,
1985
, “
The Vibrations of Radial Ball Bearings
,”
Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci.
,
199
(
3
), pp.
181
193
.
7.
Singh
,
P.
, and
Harsha
,
S. P.
,
2020
, “
Vibration Response-Based Fault Diagnosis of Cylindrical Roller Bearing Using Response Surface Methodology
,”
ASME J. Nondestruct. Eval.
,
3
(
2
), p.
021002
.
8.
Kankar
,
P. K.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2011
, “
Fault Diagnosis of Ball Bearings Using Machine Learning Methods
,”
Expert Syst. Appl.
,
38
(
3
), pp.
1876
1886
.
9.
Rathore
,
M. S.
, and
Harsha
,
S. P.
,
2021
, “
Prognostic Analysis of High-Speed Cylindrical Roller Bearing Using Weibull Distribution and k-Nearest Neighbor
,”
J. Nondestruct. Eval. Diagn. Progn. Eng. Syst.
,
5
(
1
), p.
011005
.
10.
Nistane
,
V. M.
, and
Harsha
,
S. P.
,
2018
, “
Prognosis of Degradation Progress of Ball Bearings Using Supervised Machine Learning
,”
Proc. Inst. Mech. Eng. K: J. Multi-body Dyn.
,
232
(
2
), pp.
183
198
.
11.
Najafabadi
,
M. M.
,
Villanustre
,
F.
,
Khoshgoftaar
,
T. M.
,
Seliya
,
N.
,
Wald
,
R.
, and
Muharemagic
,
E.
,
2015
, “
Deep Learning Applications and Challenges in Big Data Analytics
,”
J. Big Data
,
2
(
1
), p.
1
.
12.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.
13.
Rathore
,
M. S.
, and
Harsha
,
S. P.
,
2022
, “
Roller Bearing Failure Analysis Using Gaussian Mixture Models and Convolutional Neural Networks
,”
J. Fail. Anal. Prev.
,
22
(
5
), pp.
1
19
.
14.
LeCun
,
Y.
,
Boser
,
B. E.
,
Denker
,
J. S.
,
Henderson
,
D.
,
Howard
,
R. E.
,
Hubbard
,
W. E.
, and
Jackel
,
L. D.
,
1990
, “Handwritten Digit Recognition With a Back-Propagation Network,”
Advances in Neural Information Processing Systems
, pp.
396
404
.
15.
Kumar
,
A.
,
Kim
,
J.
,
Lyndon
,
D.
,
Fulham
,
M.
, and
Feng
,
D.
,
2016
, “
An Ensemble of Fine-Tuned Convolutional Neural Networks for Medical Image Classification
,”
IEEE J. Biomed. Health Inform.
,
21
(
1
), pp.
31
40
.
16.
Rathore
,
M. S.
, and
Harsha
,
S. P.
,
2022
, “
Degradation Pattern of High Speed Roller Bearings Using a Data-Driven Deep Learning Approach
,”
J. Signal Process. Syst.
,
94
(
12
), pp.
1
12
.
17.
Hinton
,
G.
,
Deng
,
L.
,
Yu
,
D.
,
Dahl
,
G. E.
,
Mohamed
,
A. R.
,
Jaitly
,
N.
, and
Kingsbury
,
B.
,
2012
, “
Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups
,”
IEEE Signal Process. Mag.
,
29
(
6
), pp.
82
97
.
18.
Wei
,
X.
,
Wang
,
H.
,
Scotney
,
B.
, and
Wan
,
H.
,
2020
, “
Minimum Margin Loss for Deep Face Recognition
,”
Pattern Recognit.
,
97
, p.
107012
.
19.
Lauriola
,
I.
,
Gallicchio
,
C.
, and
Aiolli
,
F.
,
2020
, “
Enhancing Deep Neural Networks via Multiple Kernel Learning
,”
Pattern Recognit.
,
101
, p.
107194
.
20.
Wong
,
W. J.
, and
Lai
,
S. H.
,
2020
, “
Multi-task CNN for Restoring Corrupted Fingerprint Images
,”
Pattern Recognit.
,
101
, p.
107203
.
21.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2012
, “Imagenet Classification With Deep Convolutional Neural Networks,”
Advances in Neural Information Processing Systems
, pp.
1097
1105
.
22.
Tajbakhsh
,
N.
,
Shin
,
J. Y.
,
Gurudu
,
S. R.
,
Hurst
,
R. T.
,
Kendall
,
C. B.
,
Gotway
,
M. B.
, and
Liang
,
J.
,
2016
, “
Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning
,”
IEEE Trans. Med. Imaging
,
35
(
5
), pp.
1299
1312
.
23.
Corona
,
E.
,
Alenya
,
G.
,
Gabas
,
A.
, and
Torras
,
C.
,
2018
, “
Active Garment Recognition and Target Grasping Point Detection Using Deep Learning
,”
Pattern Recognit.
,
74
, pp.
629
641
.
24.
Chen
,
Z.
,
Li
,
C.
, and
Sanchez
,
R. V.
,
2015
, “
Gearbox Fault Identification and Classification With Convolutional Neural Networks
,”
Shock Vib.
,
2015
, pp.
1
10
.
25.
Ding
,
X.
, and
He
,
Q.
,
2017
, “
Energy-Fluctuated Multiscale Feature Learning With Deep Convnet for Intelligent Spindle Bearing Fault Diagnosis
,”
IEEE Trans. Instrum. Meas.
,
66
(
8
), pp.
1926
1935
.
26.
Rathore
,
M. S.
, and
Harsha
,
S. P.
,
2022
, “
Non-Linear Vibration Response Analysis of Rolling Bearing for Data Augmentation and Characterization
,”
J. Vib. Eng. Technol.
, pp.
1
23
.
27.
Arel
,
I.
,
Rose
,
D. C.
, and
Karnowski
,
T. P.
,
2010
, “
Deep Machine Learning—A New Frontier in Artificial Intelligence Research
,”
IEEE Comput. Intell. Mag.
,
5
(
4
), pp.
13
18
.
28.
Takens
,
F.
,
1981
, “Detecting Strange Attractors in Turbulence,”
Dynamical Systems and Turbulence, Warwick 1980
,
Springer
,
Berlin, Heidelberg
, pp.
366
381
.
29.
Kennel
,
M. B.
,
Brown
,
R.
, and
Abarbanel
,
H. D.
,
1992
, “
Determining Embedding Dimension for Phase-Space Reconstruction Using a Geometrical Construction
,”
Phys. Rev. A
,
45
(
6
), pp.
3403
3411
.
30.
Santurkar
,
S.
,
Tsipras
,
D.
,
Ilyas
,
A.
, and
Madry
,
A.
,
2018
, “How Does Batch Normalization Help Optimization?,”
Advances in Neural Information Processing Systems
, pp.
2483
2493
.
31.
Maas
,
A. L.
,
Hannun
,
A. Y.
, and
Ng
,
A. Y.
,
2013
, “
Rectifier Nonlinearities Improve Neural Network Acoustic Models
,”
Proceedings in ICML
,
Atlanta, GA
,
June 16–21
, Vol. 30, No. 1, p.
3
.
32.
Baylog
,
J. G.
, and
Wettergren
,
T. A.
,
2017
, “
A ROC-Based Approach for Developing Optimal Strategies in UUV Search Planning
,”
IEEE J. Ocean. Eng.
,
43
(
4
), pp.
843
855
.
33.
Kingma
,
D. P.
, and
Welling
,
M.
,
2014
, “
Stochastic Gradient VB and the Variational Auto-Encoder
,”
Second International Conference on Learning Representations, ICLR
, Banff, AB, Canada, Apr. 14–16, Vol.
19
.
34.
Zhao
,
W.
,
Lu
,
C.
,
Ma
,
J.
, and
Wang
,
Z.
,
2015
, “
A Deep Learning Method Using SDA Combined With Dropout for Bearing Fault Diagnosis
,”
Vibroeng. Procedia
,
5
, pp.
151
156
.
35.
Zurada
,
J. M.
,
1992
,
Introduction to Artificial Neural Systems (Vol. 8)
,
West Publishing Co.
,
St. Paul
.
36.
Islam
,
M. M.
, and
Kim
,
J. M.
,
2019
, “
Reliable Multiple Combined Fault Diagnosis of Bearings Using Heterogeneous Feature Models and Multiclass Support Vector Machines
,”
Reliab. Eng. Syst. Saf.
,
184
, pp.
55
66
.
37.
Fawcett
,
T.
,
2006
, “
An Introduction to ROC Analysis
,”
Pattern Recognit. Lett.
,
27
(
8
), pp.
861
874
.
38.
Hand
,
D. J.
, and
Anagnostopoulos
,
C.
,
2013
, “
When Is the Area Under the Receiver Operating Characteristic Curve an Appropriate Measure of Classifier Performance?
,”
Pattern Recognit. Lett.
,
34
(
5
), pp.
492
495
.
You do not currently have access to this content.