Abstract

Advances in sensing and nondestructive evaluation methods have increased the interest in developing data-driven modeling and associated computational workflows for model-updating, in relation also to a variety of emerging digital twin applications. In this context, of particular interest in this investigation are transient effects that lead to or are caused by deformation instabilities, typically found in the cases of complex material behavior or interactions between material and geometry. In both cases, deformation localizations are observed which are typically also related to damage effects. This paper describes a novel framework to incorporate deformation data into a finite element model (FEM) that has been formulated using non-local mechanics and is capable of receiving such data and using it to describe the development of localizations. Specifically, experimentally measured full-field displacement data is used as an input in FEM as an ad-hoc boundary condition at any or every node in the body. To achieve this goal, a plasticity model which includes a spatially averaged non-local hardening parameter in the yield criterion is used to account for associated numerical instabilities and mesh dependence. Furthermore, the introduction of a length scale parameter into the constitutive law allows the connection between material behavior, geometry, and localizations. Additional steps remove the experimental data and evolve the computational predictions forward in time. Both one and three-dimensional boundary value problems are used to present results obtained by the proposed framework, while comments are made in terms of its potential uses.

References

1.
Tresca
,
M. H.
,
1878
, “
On Further Applications of the Flow of Solids
,”
Proc. Inst. Mech. Eng.
,
29
(
1
), pp.
301
345
.
2.
Bigoni
,
D.
,
2012
,
Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability
,
Cambridge University Press
,
New York
.
3.
Bodig
,
J.
, and
Jayne
,
B. A.
,
1982
,
Mechanics of Wood and Wood Composites
,
Van Nostrand Reinhold
, New York.
4.
Tuegel
,
E. J.
,
Ingraffea
,
A. R.
,
Eason
,
T. G.
, and
Spottswood
,
S. M.
,
2011
, “
Reengineering Aircraft Structural Life Prediction Using a Digital Twin
,”
Int. J. Aerosp. Eng.
,
2011
, pp.
1
14
.
5.
Madni
,
A. M.
,
Madni
,
C. C.
, and
Lucero
,
S. D.
,
2019
, “
Leveraging Digital Twin Technology in Model-Based Systems Engineering
,”
Systems
,
7
(
1
), p.
7
.
6.
De Borst
,
R.
, and
Pamin
,
J.
,
1996
, “
Some Novel Developments in Finite Element Procedures for Gradient-Dependent Plasticity
,”
Int. J. Numer. Methods Eng.
,
39
(
14
), pp.
2477
2505
.
7.
Comi
,
C.
,
1999
, “
Computational Modelling of Gradient-Enhanced Damage in Quasi-Brittle Materials, Mechanics of Cohesive-Frictional Materials: An International Journal on Experiments
,”
Modell. Comput. Mater. Struct.
,
4
(
1
), pp.
17
36
.
8.
Belytschko
,
T.
,
Fish
,
J.
, and
Engelmann
,
B. E.
,
1988
, “
A Finite Element With Embedded Localization Zones
,”
Comput. Methods Appl. Mech. Eng.
,
70
(
1
), pp.
59
89
.
9.
Hill
,
R.
,
1958
, “
A General Theory of Uniqueness and Stability in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
,
6
(
3
), pp.
236
249
.
10.
Pietruszczak
,
S.
, and
Mroz
,
Z.
,
1981
, “
Finite Element Analysis of Deformation of Strain-Softening Materials
,”
Int. J. Numer. Methods Eng.
,
17
(
3
), pp.
327
334
.
11.
Ortiz
,
M.
,
Leroy
,
Y.
, and
Needleman
,
A.
,
1987
, “
A Finite Element Method for Localized Failure Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
61
(
2
), pp.
189
214
.
12.
Cosserat
,
E.
, and
Cosserat
,
F.
,
1909
,
Theorie des Corps Déformables
,
Hermann
,
Paris
.
13.
Toupin
,
R.
,
1962
, “
Elastic Materials with Couple-Stresses
,”
Arch. Ration. Mech. Anal.
,
11
(
1
), pp.
385
414
.
14.
Mindlin
,
R. D.
,
1963
, “
Microstructure in Linear Elasticity
,” Technical Report, Columbia University, New York, Department of Civil Engineering and Engineering Mechanics.
15.
Aifantis
,
E. C.
,
1984
, “
On the Microstructural Origin of Certain Inelastic Models
,”
J. Eng. Mater. Technol.
,
164
(
4
), pp.
326
330
.
16.
Fleck
,
N.
,
Muller
,
G.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
,
1994
, “
Strain Gradient Plasticity: Theory and Experiment
,”
Acta Metall. Mater.
,
42
(
2
), pp.
475
487
.
17.
Ramaswamy
,
S.
, and
Aravas
,
N.
,
1998
, “
Finite Element Implementation of Gradient Plasticity Models Part i: Gradient-Dependent Yield Functions
,”
Comput. Methods Appl. Mech. Eng.
,
163
(
1–4
), pp.
11
32
.
18.
Ramaswamy
,
S.
, and
Aravas
,
N.
,
1998
, “
Finite Element Implementation of Gradient Plasticity Models Part ii: Gradient-Dependent Evolution Equations
,”
Comput. Methods Appl. Mech. Eng.
,
163
(
1–4
), pp.
33
53
.
19.
Yalcinkaya
,
T.
,
Brekelmans
,
W.
, and
Geers
,
M.
,
2012
, “
Non-Convex Rate Dependent Strain Gradient Crystal Plasticity and Deformation Patterning
,”
Int. J. Solids Struct.
,
49
(
18
), pp.
2625
2636
.
20.
McAuliffe
,
C.
, and
Waisman
,
H.
,
2013
, “
Mesh Insensitive Formulation for Initiation and Growth of Shear Bands Using Mixed Finite Elements
,”
Comput. Mech.
,
51
(
5
), pp.
807
823
.
21.
Tsagrakis
,
I.
, and
Aifantis
,
E. C.
,
2015
, “
On the Effect of Strain Gradient on Adiabatic Shear Banding
,”
Metall. Mater. Trans. A
,
46
(
10
), pp.
4459
4467
.
22.
Jirasek
,
M.
,
2007
, “
Nonlocal Damage Mechanics
,”
Eur. J. Civil Eng.
,
11
(
7–8
), pp.
993
1021
.
23.
Eringen
,
A. C.
, and
Edelen
,
D.
,
1972
, “
On Nonlocal Elasticity
,”
Int. J. Eng. Sci.
,
10
(
3
), pp.
233
248
.
24.
Bazant
,
Z. P.
, and
Pijaudier-Cabot
,
G.
,
1988
, “
Nonlocal Continuum Damage, Localization Instability and Convergence
,”
J. Appl. Mech.
,
55
(
2
), pp.
287
293
.
25.
Stromberg
,
L.
, and
Ristinmaa
,
M.
,
1996
, “
Fe-Formulation of a Nonlocal Plasticity Theory
,”
Comput. Methods Appl. Mech. Eng.
,
136
(
1–2
), pp.
127
144
.
26.
Pijaudier-Cabot
,
G.
, and
Bazant
,
Z. P.
,
1987
, “
Nonlocal Damage Theory
,”
J. Eng. Mech.
,
113
(
10
), pp.
1512
1533
.
27.
Shaw
,
J. A.
, and
Kyriakides
,
S.
,
1997
, “
Initiation and Propagation of Localized Deformation in Elasto-Plastic Strips Under Uniaxial Tension
,”
Int. J. Plast.
,
13
(
10
), pp.
837
871
.
28.
Bulatov
,
V.
, and
Argon
,
A.
,
1994
, “
A Stochastic Model for Continuum Elasto-Plastic Behavior. i. Numerical Approach and Strain Localization
,”
Modell. Simul. Mater. Sci. Eng.
,
2
(
2
), p.
167
.
29.
Anders
,
M.
, and
Hori
,
M.
,
2001
, “
Three-Dimensional Stochastic Finite Element Method for Elasto-Plastic Bodies
,”
Int. J. Numer. Methods Eng.
,
51
(
4
), pp.
449
478
.
30.
Zhang
,
Y.
,
Shi
,
H.-J.
,
Gu
,
J.
,
Li
,
C.
,
Kadau
,
K.
, and
Luesebrink
,
O.
,
2014
, “
Crystallographic Analysis for Fatigue Small Crack Growth Behaviors of a Nickel-Based Single Crystal by In Situ Sem Observation
,”
Theor. Appl. Fract. Mec.
,
69
, pp.
80
89
.
31.
Xue
,
Y.
,
McDowell
,
D.
,
Horstemeyer
,
M.
,
Dale
,
M.
, and
Jordon
,
J.
,
2007
, “
Microstructure-Based Multistage Fatigue Modeling of Aluminum Alloy 7075-t651
,”
Eng. Fract. Mech.
,
74
(
17
), pp.
2810
2823
.
32.
Wisner
,
B.
, and
Kontsos
,
A.
,
2018
, “
Investigation of Particle Fracture During Fatigue of Aluminum 2024
,”
Int. J. Fatigue
,
111
, pp.
33
43
.
33.
Sun
,
Y.
,
Pang
,
J. H.
,
Wong
,
C. K.
, and
Su
,
F.
,
2005
, “
Finite Element Formulation for a Digital Image Correlation Method
,”
Appl. Opt.
,
44
(
34
), pp.
7357
7363
.
34.
Besnard
,
G.
,
Hild
,
F.
, and
Roux
,
S.
,
2006
, “
Finite-Element” Displacement Fields Analysis From Digital Images: Application to Portevin–le Chatelier Bands
,”
Exp. Mech.
,
46
(
6
), pp.
789
803
.
35.
Wang
,
W.
,
Mottershead
,
J. E.
,
Ihle
,
A.
,
Siebert
,
T.
, and
Schubach
,
H. R.
,
2011
, “
Finite Element Model Updating From Full-Field Vibration Measurement Using Digital Image Correlation
,”
J. Sound Vib.
,
330
(
8
), pp.
1599
1620
.
36.
Dizaji
,
M. S.
,
Alipour
,
M.
, and
Harris
,
D.
,
2018
, “
Leveraging Full-Field Measurement From 3d Digital Image Correlation for Structural Identification
,”
Exp. Mech.
,
58
(
7
), pp.
1049
1066
.
37.
Zobeiry
,
N.
,
Forghani
,
A.
,
McGregor
,
C.
,
McClennan
,
S.
,
Vaziri
,
R.
, and
Poursartip
,
A.
,
2017
, “
Effective Calibration and Validation of a Nonlocal Continuum Damage Model for Laminated Composites
,”
Compos. Struct.
,
173
, pp.
188
195
.
38.
Becker
,
T.
,
Mostafavi
,
M.
,
Tait
,
R.
, and
Marrow
,
T.
,
2012
, “
An Approach to Calculate the j-Integral by Digital Image Correlation Displacement Field Measurement
,”
Fatigue Fract. Eng. Mater. Struct.
,
35
(
10
), pp.
971
984
.
39.
Vavrik
,
D.
, and
Jandejsek
,
I.
,
2014
, “
Experimental Evaluation of Contour j Integral and Energy Dissipated in the Fracture Process Zone
,”
Eng. Fract. Mech.
,
129
, pp.
14
25
.
40.
Baxevanakis
,
K.
,
Mo
,
C.
,
Cabal
,
M.
, and
Kontsos
,
A.
,
2018
, “
An Integrated Approach to Model Strain Localization Bands in Magnesium Alloys
,”
Comput. Mech.
,
61
(
1
), pp.
119
135
.
41.
Sharma
,
L.
,
Peerlings
,
R. H.
,
Shanthraj
,
P.
,
Roters
,
F.
, and
Geers
,
M. G.
,
2018
, “
Fft-Based Interface Decohesion Modelling by a Nonlocal Interphase
,”
Adv. Model. Simul. Eng. Sci.
,
5
(
1
), pp.
1
17
.
You do not currently have access to this content.