Abstract

The fluoride-salt-cooled high-temperature reactor (FHR) is an advanced reactor concept that uses tristructural isotropic (TRISO) high-temperature fuel and low-pressure liquid salt coolant. A 20-MWth test reactor, as the key step in demonstrating the technical feasibility, is currently under design at Massachusetts Institute of Technology. This study focuses on the coupled conduction and convection heat transfer adopting a three-dimensional unit-cell model with one coolant channel and six one-third fuel compacts. The laminar, transitional, and turbulent flows are investigated with the use of computational fluid dynamic (CFD) software, CD-adapco STARCCM+. The model is validated against theory for developing laminar flow in the benchmark study with excellent agreement. The model is also benchmarked for transitional and turbulent flows by Hausen, Gnielinski, Dittus-Boelter, and Sieder-Tate correlations. Azimuthal distributions of temperature, heat flux, and heat transfer coefficient along the coolant-graphite interface were obtained for the asymmetric heat source, graphite materials, and two different types of salt coolant. The results show that the asymmetric power generation has little impact on peak fuel temperature, interface temperature, and heat transfer coefficient for a unit-cell module in laminar flow regime due to effective thermal conduction of the graphite matrix. In the turbulent flow regime, the effect on the azimuthal heat flux and heat transfer coefficient is more pronounced.

References

1.
Forsberg
,
C.
,
Hu
,
L.-W.
,
Peterson
,
P. F.
, and
Sridharan Kumar
,
K.
,
2012
, “
Fluoride-Salt-Cooled High-Temperature Reactors (FHRs) for Base-Load and Peak Electricity, Grid Stabilization, and Process Heat
,” MIT-ANP-TR-147,
Department of Nuclear Science and Engineering, Massachusetts Institute of Technology
, Cambridge, MA.
2.
Nuclear Systems Design Class
,
2012
, “
Fluoride Salt-Cooled High-Temperature Test Reactor (FHTR).
3.
Travis
,
B. W.
, and
El-Genk
,
M. S.
,
2012
, “
A Heat Transfer Correlation for Flow Channels in a Prismatic Core VHTR
,”
Trans. Fusion Sci. Technol.
,
61
(
1T
), pp.
161
166
.
4.
Xiao
,
Y.
,
Hu
,
L.-W.
,
Forsberg
,
C.
,
Qiu
,
S.
,
Su
,
G.
,
Chen
,
K.
, and
Wang
,
N.
,
2014
, “
Analysis of the Limiting Safety System Settings of a Fluoride Salt Cooled High Temperature Test Reactor
,”
Nucl. Technol.
,
187
(
3
), pp.
221
234
.10.13182/NT13-93
5.
Snead
,
L. L.
,
2008
, “
Accumulation of Thermal Resistance in Neutron Irradiated Graphite Materials,
J. Nucl. Mater.
,
381
(
1–2
), pp.
76
82
.10.1016/j.jnucmat.2008.07.017
6.
CD-adapco
,
STAR-CCM+ 8.02.008 UserGuide_8.02.008.pdf
, www.cd-adapco.com.
7.
Tak
,
N.-I.
,
Kim
,
M.-H.
, and
Lee
,
W. J.
,
2008
, “
Numerical Investigation of a Heat Transfer Within the Prismatic Fuel Assembly of a Very High Temperature Reactor,
Ann. Nucl. Energy
,
35
(
10
), pp.
1892
1899
.10.1016/j.anucene.2008.04.005
8.
Travis
,
B. W.
, and
El-Genk
,
M. S.
,
2013
, “
Numerical Simulation and Turbulent Convection Heat Transfer Correlation for Coolant Channels in a Very-High Temperature Reactor,
Heat Transfer Eng.
,
34
(
1
), pp.
1
14
.10.1080/01457632.2013.694727
9.
Ferng
,
Y.M.
,
Lin
,
K.Y.
, and
Chi
,
C.W.
,
2012
CFD Investigating Thermal-Hydraulic Characteristics of FLiNaK Salt as a Heat Exchange Fluid,
Appl. Thermal Eng.
,
37
, pp.
235
240
.10.1016/j.applthermaleng.2011.11.021
10.
Solidworks Corp
.,
Solidworks2012
, www.solidworks.com.
11.
Todreas
,
N. E.
, and
Kazimi
,
M. S.
,
1993
,
Nuclear System I-Thermal Hydraulic Fundamentals
,
Hemisphere Publishing Corp.
,
New York
, pp.
368
375
.
12.
Shih
,
T. H.
,
Liou
,
W.W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1994
. “
A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows: Model Development and Validation
,” Report No. NASA TM 106721.
13.
Travis
,
B. W.
, and
El-Genk
,
M. S.
,
2013
, “
Thermal-Hydraulics Analyses for 1/6 Prismatic VHTR Core and Fuel Element With and Without Bypass Flow,
Energy Convers. Manage.
,
67
, pp.
325
341
.10.1016/j.enconman.2012.11.003
14.
Ho
,
F. H.
,
1988
,
Graphite Design Handbook
,
General Atomics
,
San Diego, CA
.
15.
Williams
,
D. F.
,
Toth
,
L. M.
, and
Clarno
,
K. T.
,
2006
, “
Assessment of Candidate Molten Salt Coolants for the Advanced High-Temperature Reactor (AHTR)
,” ORNL/TM-2006/12,
Oak Ridge National Laboratory
16.
Cantor
,
S.
,
Cooke
,
J. W.
,
Dworkin
,
A. S.
,
Robbins
,
G. D.
,
Thoma
,
R. E.
, and
Watson
,
G. M.
,
1968
, “
Physical Properties of Molten-Salt Reactor Fuel, Coolant, and Ush Salts
,” Technical Report No. ORNL-TM-2316,
Oak Ridge National Laboratory
.
17.
Rosenthal
,
M. W.
,
Briggs
,
R. B.
, and
Kasten
,
P. R.
,
1968
, “
Molten Salt Reactor Program Semiannual Progress Report for Period Ending
,” Technical Report No. ORNL-4344,
Oak Ridge National Laboratory
.
18.
Williams
,
D. F.
,
2006
, “
Assessment of Candidate Molten Salt Coolants for the NGNP/NHI Heat Transfer Loop,
” ORNL/TM-2006/69,
Oak Ridge National Laboratory.
19.
Xiao
,
Y.
,
Hu
,
L. W.
,
Forsberg
,
C.
, et al.,
2013
, “
Licensing Considerations of a Fluoride Salt Cooled High Temperature Test Reactor
,”
Proceedings of the 21st International Conference on Nuclear Engineering, ICONE21 2013
,
Chengdu, China
,
July 29–August 2
,
American Society of Mechanical Engineers
.
20.
Rea
,
U.
,
McKrell
,
T.
,
Hu
,
L.-W.
, and
Buongiorno
,
J.
,
2009
, “
Laminar Convective Heat Transfer and Viscous Pressure Loss of Alumina–Water and Zirconia–Water Nanofluids
,”
Int. J. Heat Mass Transf.
,
52
(
7–8
), pp.
2042
2048
.10.1016/j.ijheatmasstransfer.2008.10.025
21.
Lienhard
,
J. H.
, IV
, and
Lienhard
,
J. H.
, V
,
2008
,
A Heat Transfer Textbook
, 3rd ed.,
Phlogiston Press Cambridge
,
Cambridge, MA
,
pp.
352
353
.
22.
Hausen
,
H.
,
1943
,
Darstellung des Warmeuberganges in Rohren durch verallgemeinerte Potenzbeziehungen
,
Z. VDI Beiheft Verfahrenstechnik
,
4,
p.
91
.
23.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), p.
359
.
24.
Sieder
,
E. N.
, and
Tate
,
G. E.
,
1936
, “
Heat Transfer and Pressure Drop of Liquids in Tubes,
Ind. Eng. Chem.
,
28
(
12
), pp.
1429
1435
.10.1021/ie50324a027
You do not currently have access to this content.