The Canadian super critical water-cooled reactor (SCWR) concept requires materials to operate at higher temperatures than current generation III water-cooled reactors. Materials performance after radiation damage is an important design consideration. Materials that are both corrosion resistant and radiation damage tolerant are required. This paper summarizes the operating conditions including temperature, neutron flux, and residence time of in-core Canadian SCWR components. The focus is on the effects of irradiation on in-core components, including those exposed to a high neutron flux in the fuel assembly, the high pressure boundary between coolant and moderator, as well as the low-temperature, low-flux calandria vessel that contains the moderator. Although the extreme conditions and the broad range of SCWR in-core operating conditions present significant materials selection challenges, candidate alloys that can meet the performance requirements under most in-core conditions have been identified. However, for all candidate materials, insufficient data are available to unequivocally ensure acceptable performance and experimental irradiations of candidate core materials will be required. Research programs are to include out-of-pile tests on un-irradiated and irradiated alloys. Ideally, in-flux studies at appropriate temperatures, neutron spectrum, dose rate, duration, and coolant chemistry will be required. Characterization of the microstructure and the mechanical behavior including strength, ductility, swelling, fracture toughness, cracking, and creep on each of the in-core candidate materials will ensure their viability in the Canadian SCWR.

References

1.
Yetisir
,
M.
,
Gaudet
,
M.
, and
Rhodes
,
D.
,
2013
, “
Development and Integration of Canadian SCWR With Counter-Flow Fuel Channel
,”
Sixth International Symposium on Supercritical Water-Cooled Reactors
, Shenzhen, China, Mar. 3–7, Paper No. ISSCWR6-13059.
2.
Zheng
,
W.
,
Guzonas
,
D.
,
Boyle
,
K.
,
Li
,
J.
, and
Xu
,
S.
,
2016
, “
Materials Assessment for the Canadian SCWR Core Concept
,”
JOM
,
68
(
2
), pp.
456
462
.
3.
Guzonas
,
D.
, and
Novotny
,
R.
,
2014
, “
Supercritical Water-Cooled Reactor Materials—Summary of Research and Open Issues
,”
Prog. Nucl. Energy
,
77
, pp.
361
372
.
4.
Bakai
,
A. S.
,
Guzonas
,
D. A.
,
Boriskin
,
V. N.
,
Dovbnya
,
A. N.
, and
Dyuldya
,
S. V.
,
2013
, “
Supercritical Water Convection Loop for SCWR Materials Corrosion Tests Under Electron Irradiation: First Results and Lessons Learned
,”
Sixth International Symposium on Supercritical Water-Cooled Reactors (ISSCWR-6)
, Shenzhen, China, Mar. 3–7, Paper No. ISSCWR6-13062.
5.
Bakai
,
A. S.
,
Boriskin
,
V. N.
,
Dovbnya
,
A. N.
,
Dyuldya
,
S. V.
, and
Guzonas
,
D. A.
,
2011
, “
Supercritical Water Convection Loop (NSC KIPT) for Materials Assessment for the Next Generation Reactors
,”
Fifth International Symposium on Supercritical Water-Cooled Reactors (ISSCWR-5)
, Vancouver, BC, Canada, Mar. 13–16, Paper No. P051.
6.
Bakai
,
O. S.
,
Guzonas
,
D. A.
,
Boriskin
,
V. M.
,
Dovbnya
,
A. M.
, and
Dyuldya
,
S. V.
,
2015
, “
Combined Effect of Irradiation, Temperature, and Water Coolant Flow on Corrosion of Zr-, Ni–Cr-, and Fe–Cr-Based Alloys
,”
Seventh International Symposium on Supercritical Water-Cooled Reactors (ISSCWR-7)
, Helsinki, Finland, Mar. 15–18, Paper No. ISSCWR7-2012.
7.
EPRI
,
2012
, “
Critical Issues Report and Roadmap for Advanced Radiation-Resistant Materials Program
,” Electric Power Research Institute, Palo Alto, CA, Report No.
1026482
.https://www.epri.com/#/pages/product/1026482/
8.
Comprelli
,
F. A.
,
Busboom
,
H. J.
, and
Spalaris
,
C. N.
,
1969
, “
Comparison of Radiation Damage Studies and Fuel Cladding Performance for Incoloy-800
,” ASTM International, West Conshohocken, PA, Standard No.
STP 457
.https://www.astm.org/DIGITAL_LIBRARY/STP/PAGES/STP41860S.htm
9.
Rabin
,
S. A.
,
Atraz
,
B. G.
,
Bader
,
M. B.
,
Busboom
,
H. J.
, and
Hazel
,
V. E.
,
1967
, “
Examination and Evaluation of Rupture in EVESR Superheat Fuel Rod With 0.012-Inch-Thick Incoloy-800 Cladding
,” General Electric Co., Sunnyvale, CA, Advanced Products Operation Research and Development Report No.
GEAP-5416
.https://www.osti.gov/biblio/4362236-examination-evaluation-rupture-evesr-superheat-fuel-rod-inch-thick-incoloy-cladding
10.
Emel'yanov
,
I.
,
Shatskaya
,
O. A.
,
Rivkin
,
E. Y.
, and
Nikolenko
,
N. Y.
,
1972
, “
Strength of Construction Elements in the Fuel Channels of the Beloyarsk Power Station Reactors
,”
Soviet At. Energ.
,
33
(
3
), pp. 842–847.
11.
Chow
,
C. K.
, and
Khartabil
,
H. F.
,
2008
, “
Conceptual Fuel Channel Designs for CANDU-SCWR
,”
Nucl. Eng. Technol.
,
40
(2), p.
139
.
12.
Walters
,
L.
, and
Donohue
,
S.
,
2016
, “
Development of High Performance Pressure Tube Material for Canadian SCWR Concept
,”
JOM
,
68
(
2
), pp.
490
495
.
13.
Special Metals
,
2004
, “
Incoloy® Alloy 800H & 800HT®
,” Product Sheet, Special Metals, Huntington, WV.
14.
ASM, 2018, “
AISI Type 310S Stainless Steel
,” ASM Aerospace Specification Metals, Inc., Pompano Beach, FL.
15.
Special Metals
,
2013
, “
Inconel® Alloy 625
,” Product Sheet, Special Metals, Huntington, WV.
16.
ASM, 2018, “
AISI Type 304L Stainless Steel
,” ASM Aerospace Specification Metals, Inc., Pompano Beach, FL.
17.
Xu
,
S.
, and
Amirkhiz
,
B. S.
,
2016
, “
Mechanical Properties of Fuel Cladding Candidate Alloys for Canadian SCWR Concept
,”
JOM
,
68
(
2
), pp. 469–474.
18.
Nanstad
,
R. K.
,
McClintock
,
D. A.
,
Hoelzer
,
D. T.
,
Tan
,
L.
, and
Allen
,
T. R.
,
2009
, “
High Temperature Irradiation Effects in Selected Generation IV Structural Alloys
,”
J. Nucl. Mater.
,
392
(2), pp.
331
340
.
19.
Guzonas
,
D. A.
,
Brosseau
,
F.
,
Tremaine
,
P.
,
Meesungnoen
,
J.
, and
Jay-Gerin
,
J.-P.
,
2012
, “
Water Chemistry in a Supercritical Water-Cooled Pressure Tube Reactor
,”
Nucl. Technol.
,
179
(
2
), pp.
205
219
.
20.
Greenwood
,
L. R.
,
1983
, “
A New Calculation of Thermal Neutron Damage and Helium Production in Nickel
,”
J. Nucl. Mater.
,
115
(2–3), pp.
137
142
.
21.
Greenwood
,
L. R.
, and
Garner
,
F. A.
,
1996
, “
Hydrogen Generation Arising From the 59Ni (n,p) Reaction and Its Impact on Fission-Fusion Correlations
,”
J. Nucl. Mater.
,
233–237
(
Pt. 2
), pp.
1530
1534
.
22.
Ullmaier
,
H.
,
1985
, “
Helium in Fusion Materials: High Temperature Embrittlement
,”
J. Nucl. Mater.
,
133–134
, pp.
100
104
.
23.
Remec
,
I.
,
Wang
,
J.
, and
Kam
,
F. B. K.
,
1996
, “
HFIR Steels Embrittlement: The Possible Effect of Gamma Field Contribution
,” ASTM International, West Conshohocken, PA, Standard No.
STP 1270
.https://www.astm.org/DIGITAL_LIBRARY/STP/PAGES/STP16496S.htm
24.
Bysice
,
S.
,
Walters
,
L.
,
Bromley
,
B. P.
, and
Pencer
,
J.
,
2016
, “
Comparison of DPA and Helium Production in Candidate Fuel Cladding Materials for the Canadian SCWR
,”
CNL Nucl. Rev.
,
5
(2), pp. 269–275.
25.
Greenwood
,
L. R.
, and
Smither
,
R. K.
,
1985
, “
SPECTER: Neutron Damage Calculations for Materials Irradiations
,” Argonne National Laboratory, Argonne, IL, Report No.
ANL/FPP/TM-197
.https://www.osti.gov/biblio/6022143
26.
Edwards
,
D. J.
,
Garner
,
F. A.
,
Bruemmer
,
S. M.
, and
Efsing
,
P.
,
2009
, “
Nano-Cavities Observed in a 316SS PWR Flux Thimble Tube Irradiated to 33 and 70 dpa
,”
J. Nucl. Mater.
,
384
(3), pp.
249
255
.
27.
Maziasz
,
P. J.
,
1993
, “
Overview of Microstructural Evolution in Neutron-Irradiated Austenitic Stainless Steels
,”
J. Nucl. Mater.
,
205
, pp.
118
145
.
28.
Hunn
,
J. D.
,
Lee
,
E. H.
,
Byun
,
T. S.
, and
Mansur
,
L. K.
,
2000
, “
Helium and Hydrogen Induced Hardening in 316 LN Stainless Steel
,”
J. Nucl. Mater.
,
282
(2–3), pp.
131
136
.
29.
Busby
,
J. T.
,
Hash
,
M. C.
, and
Was
,
G. S.
,
2005
, “
The Relationship Between Hardness and Yield Stress in Irradiated Austenitic and Ferritic Steels
,”
J. Nucl. Mater.
,
336
(2–3), pp.
267
287
.
30.
Sindelar
,
R. L.
,
Caskey
,
G. R.
,
Thomas
,
J. K.
,
Hawthorne
,
J. R.
,
Hiser
,
A. L.
,
Lott
,
A. L.
,
Begely
,
J. A.
, and
Shogan
,
R. P.
,
1993
, “
Effects of Radiation on Materials
,” ASTM International, West Conshohocken, PA, Standard No.
STP 1175
.https://www.astm.org/DIGITAL_LIBRARY/STP/SOURCE_PAGES/STP1175.htm
31.
Mills
,
W. J.
,
1997
, “
Fracture Toughness of Type 304 and 316 Stainless Steels and Their Weld
,”
Int. Mater. Rev.
,
42
(
2
), pp.
45
82
.
32.
Mansur
,
L. K.
,
Rowclife
,
A. F.
,
Nanstad
,
R. K.
,
Zinkle
,
S. J.
,
Corwin
,
W. R.
, and
Stoller
,
R. E.
,
2004
, “
Material Needs for Fusion, Generation IV Fission Reactors and Spallation Neutrons Sources—Similarities and Differences
,”
J. Nucl. Mater.
,
329–333
(Pt. A), pp.
166
172
.
33.
Bloom
,
E. E.
, and
Weir
,
J. R.
,
1972
, “
Effect of Neutron Irradiation on the Ductility of Austenitic Stainless Steel
,”
Nucl. Technol.
,
16
(1), pp. 45–54.
34.
Martin
,
W. R.
, and
Weir
,
J. R.
,
1967
, “
Solutions to the Problems of High-Temperature Irradiation Embrittlement
,” ASTM International, West Conshohocken, PA, Standard No.
STP 426
.https://www.astm.org/DIGITAL_LIBRARY/STP/PAGES/STP41333S.htm
35.
Lucas
,
G. E.
,
1996
, “
Irradiation-Induced Changes in the Mechanical Properties and Microstructures of Solution Annealed Austenitic Stainless Steels at Low to Intermediate Temperatures
,”
Mater. Res. Soc. Symp. Proc.
,
439
, pp.
425
436
.
36.
Klassen
,
R. J.
, and
Rajakumar
,
H.
,
2016
, “
Combined Effect of Irradiation and Temperature on the Mechanical Strength of Inconel 800H and AISI 301 Alloys for In-Core Components of a GEN-IV SCWR
,” ASME J. Nuclear Rad. Sci.,
2
(2), p. 021006.
37.
Mansur
,
L. K.
, and
Grossbeck
,
M. L. J.
,
1988
, “
Mechanical Property Changes Induced in Structural Alloys by Neutron Irradiations With Different Helium to Displacement Ratios
,”
J. Nucl. Mater.
,
155–157
(Pt. 1), pp.
130
147
.
38.
Rowcliffe
,
A. F.
,
Mansur
,
L. K.
,
Hoelzer
,
D. T.
, and
Nanstad
,
R. K.
,
2009
, “
Perspectives on Radiation Effects in Nickel-Base Alloys for Applications in Advanced Reactors
,”
J. Nucl. Mater.
,
392
(2), pp.
341
352
.
39.
Brinkman
,
C. R.
,
Korth
,
G. E.
, and
Beeston
,
J. M.
,
1973
, “
Influence of Irradiation on the Creep/Fatigue Behavior of Several Austenitic Stainless Steels and Incoloy 800 at 700 C
,” ASTM International, West Conshohocken, PA, Standard No.
STP 529
.https://www.astm.org/DIGITAL_LIBRARY/STP/PAGES/STP35469S.htm
40.
Higuchi
,
S.
,
Sakurai
,
S.
, and
Ishida
,
T.
,
2007
, “
A Study of Fuel Behavior in an SCWR Core With High Power Density
,” International Congress on Advances in Nuclear Power Plants (ICAPP'07), Nice, France, May 13–18, Paper No. 7206.
41.
Was
,
G. S.
, and
Andressen
,
P. L.
,
2007
, “
Stress Corrosion Cracking Behavior of Alloys in Aggressive Nuclear Reactor Core Environments
,”
Corrosion
,
63
(1), pp.
19
45
.
42.
Was
,
G. S.
,
Zhou
,
R.
,
West
,
E. A.
, and
Jiao
,
Z.
,
2009
, “
Intergranular Cracking Behavior of Irradiated Austenitic Alloys in Supercritical Water
,”
14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems
, Virginia Beach, VA, Aug. 23–27, pp.
1679
1689
.
43.
Hojná
,
A.
,
2013
, “
Irradiation-Assisted Stress Corrosion Cracking and Impact on Life Extension
,”
Corrosion
,
69
(
10
), pp.
964
974
.
44.
Freyer
,
P. D.
,
Mager
,
T. R.
, and
Burke
,
M. A.
,
2007
, “
Hot Cell Crack Initiation Testing of Various Heats of Highly Irradiated 315 Stainless Steel Component Obtained From Three Commercial PWRs
,”
13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems
, Whistler, BC, Canada, Aug. 19–23, pp.
311
330
.
45.
Teysseyre
,
S.
,
Peng
,
Q.
,
Becker
,
C.
, and
Was
,
G. S.
,
2007
, “
Facility for Stress Corrosion Cracking of Irradiated Specimens in Supercritical Water
,”
J. Nucl. Mater.
,
371
(
1–3
), pp.
98
106
.
46.
Zhou
,
R.
,
West
,
E. A.
,
Jiao
,
Z.
, and
Was
,
G. S.
,
2009
, “
Irradiation-Assisted Stress Corrosion Cracking of Austenitic Alloys in Supercritical Water
,”
J. Nucl. Mater.
,
395
(
1–3
), pp.
11
22
.
47.
Teysseyre
,
S.
, and
Was
,
G. S.
,
2007
, “
Stress Corrosion Cracking of Neutron-Irradiated Stainless Steel in Supercritical Water
,”
13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems
, Whistler, BC, Canada, Apr. 19–23, pp.
540
552
.
48.
Savoini
,
B.
,
Cáceres
,
D.
,
Vergara
,
I.
,
González
,
R.
, and
Muñoz Santiuste
,
J. E.
,
2000
, “
Radiation Damage in Neutron-Irradiated Yttria-Stabilized-Zirconia Single Crystals
,”
J. Nucl. Mater.
,
277
(2–3), pp.
199
203
.
49.
Ibrahim
,
E. F.
, and
Cheadle
,
B. A.
,
1985
, “
Development of Zirconium Alloys for Pressure Tubes in CANDU Reactors
,”
Can. Metall. Q.
,
24
(3), p.
273
.
50.
Ibrahim
,
E. F.
,
Price
,
E. G.
, and
Wysiekierski
,
A. G.
,
1972
, “
Creep and Stress-Rupture of High Strength Zirconium Alloys
,”
Can. Metall. Q.
,
11
(1), p.
273
.
51.
Cheadle
,
B. A.
,
Holt
,
R. A.
,
Fidleris
,
V.
,
Causey
,
A. R.
, and
Urbanic
,
V. F.
,
1982
, “
High-Strength, Creep-Resistant Excel Pressure Tubes
,” ASTM International, West Conshohocken, PA, Standard No.
STP 754
.https://www.astm.org/DIGITAL_LIBRARY/STP/PAGES/STP37055S.htm
52.
Ibrahim
,
E. F.
,
1987
, “
Mechanical Properties of Cold Drawn Zr-2.5Nb Pressure Tubes After Up to 12 Years in CANDU Reactors
,” Paper 12, Materials for Nuclear Reactor Core Applications, BNES, London, Report No.
AECL-9480
.https://inis.iaea.org/search/search.aspx?orig_q=RN:44045100
53.
Causey
,
A. R.
,
Carpenter
,
G. J. C.
, and
MacEwen
,
S. R.
,
1980
, “
In-Reactor Stress Relaxation of Selected Metals and Alloys at Low Temperatures
,”
J. Nucl. Mater.
,
90
(1–3), pp.
216
223
.
54.
Idrees
,
Y.
,
Yao
,
Z.
,
Sattari
,
M.
,
Kirk
,
M. A.
, and
Daymond
,
M. R.
,
2013
, “
Irradiation Induced Microstructural Changes in Zr-Excel Alloy
,”
J. Nucl. Mater.
,
441
, pp.
138
151
.
55.
IAEA
, 2017, “Research Reactor Database,” International Atomic Energy Agency, Vienna, Austria, accessed Feb. 21, 2018, https://nucleus.iaea.org/RRDB/RR/ReactorSearch.aspx?rf=1
56.
Seran
,
J. L.
, and
Dupouy
,
J. M.
,
1982
, “
The Swelling of Solution Annealed 316 Cladding in Rapsodie and Phenix
,” ASTM International, West Conshohocken, PA, Standard No.
STP 782
.https://www.astm.org/DIGITAL_LIBRARY/STP/PAGES/STP34335S.htm
57.
Lewthwaite
,
G. W.
, and
Mosedale
,
D.
,
1980
, “
The Effects of Temperature and Dose-Rate Variations on the Creep of Austenitic Stainless Steels in the Dounreay Fast Reactor
,”
J. Nucl. Mater.
,
90
(1–3), pp.
205
215
.
58.
Okita
,
T.
,
Sato
,
T.
,
Sekimura
,
N.
,
Garner
,
F. A.
, and
Greenwood
,
L. R.
,
2002
, “
The Primary Origin of Dose Rate Effects on Microstructural Evolution of Austenitic Alloys During Neutron Irradiation
,”
J. Nucl. Mater.
,
307–311
(Pt. 1), pp.
322
326
.
You do not currently have access to this content.