Abstract

A significant hurdle in the development of performance simulation tools to analyze and evaluate nuclear power plants (NPP) is finding data relating to component performance maps. As a result, engineers often rely on an estimation approach using various scaling techniques. The purpose of this study is to determine the component characteristics of a closed-cycle gas turbine NPP using the existing component maps with the corresponding design data. The design data are applied for different working fluids using a multifluid scaling approach to adapt data from one component map into another. The multifluid scaling technique described herein was developed as an in-house computer simulation tool. This approach makes it easy to theoretically scale the existing maps using similar or different working fluids without carrying out a full experimental test or repeating the whole design and development process. The results of selected case studies show a reasonable agreement with the available data. The analyses intend to aid the development of cycles for Generation IV NPPs specifically gas-cooled fast reactors (GFRs) and very high-temperature reactors (VHTRs).

References

1.
Locatelli
,
G.
,
Mancini
,
M.
, and
Todeschini
,
N.
,
2013
, “
Generation IV Nuclear Reactors: Current Status and Future Prospects
,”
Energy Policy
,
61
, pp.
1503
1520
.10.1016/j.enpol.2013.06.101
2.
Osigwe
,
E. O.
,
Pilidis
,
P.
,
Nikolaidis
,
T.
, and
Sampath
,
S.
,
2019
, “
GT-ACYSS: Gas Turbine Arekret-Cycle Simulation Modelling for Training and Educational Purposes
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
5
(
4
), p.
041207
.10.1115/1.4043681
3.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
1998
,
Gas Turbine Performance
,
Blackwell Science
,
Oxford, UK
, p.
664
.
4.
Lee
,
J. C.
,
Campbell
,
J.
, and
Wright
,
D. E.
,
1981
, “
Closed-Cycle Gas Turbine Working Fluids
,”
ASME J. Eng. Power
,
103
, pp.
220
228
.10.1115/1.3230701
5.
Wong
,
C. S.
, and
Krumdieck
,
S.
,
2015
, “
Scaling of Gas Turbine From Air to Refrigerants for Organic Rankine Cycle (ORC) Using Similarity Concept
,”
Third International Seminar on ORC Power Systems
, Brussels, Germany, Oct. 12–14, Paper No. 20.
6.
Kurzke
,
J.
, and
Riegler
,
C.
,
2000
, “
A New Compressor Map Scaling Procedure for Preliminary Conceptual Design of Gas Turbine
,”
ASME
Paper No. 2000-GT-0006.10.1115/2000-GT-0006
7.
Drummond
,
C.
, and
Davison
,
C. R.
,
2009
, “
Capturing the Shape Variance in Gas Turbine Compressor Maps
,”
ASME
Paper No. GT2009-60141.10.1115/GT2009-60141
8.
Osigwe
,
E. O.
,
Li
,
Y. G.
,
Sampath
,
S.
,
Jombo
,
G.
, and
Indarti
,
D.
,
2017
, “
Integrated Gas Turbine System Diagnostics: Components and Sensor Faults Quantification Using Artificial Neural Network
,”
23rd ISABE Conference Proceedings
, Manchester, UK, Sept. 3–8, Paper No.
ISABE-2017-2605
.https://www.researchgate.net/publication/319645027_Integrated_Gas_Turbine_System_Diagnostics_Components_and_Sensor_Faults_Quantification_using_Artificial_Neural_Network
9.
Ghorbanian
,
K.
, and
Gholamrezaei
,
M.
,
2007
, “
Axial Compressor Performance Map Prediction Using Artificial Neural Network
,”
ASME
Paper No. GT2007-27165.10.1115/GT2007-27165
10.
Kong
,
C.
,
Kho
,
S.
, and
Ki
,
J.
,
2006
, “
Component Map Generation of a Gas Turbine Using Genetic Algorithms
,”
ASME J. Eng. Power
,
128
(
1
), pp.
92
96
.10.1115/1.2032431
11.
Drummond
,
C.
, and
Davison
,
C. R.
,
2009
, “
Improved Compressor Maps Using Approximate Solutions to the Moore Greitzer Model
,”
ASME
Paper No. GT2009-60148.10.1115/GT2009-60148
12.
Kurzke
,
J.
,
2011
, “
Correlations Hidden in Compressor Maps
,”
ASME
Paper No. GT2011-45519.10.1115/GT2011-45519
13.
Kong
,
C.
,
Lim
,
S.
,
Oh
,
S.
, and
Kim
,
J.
,
2010
, “
Inverse Generation of Gas Turbine Component Performance Maps From Experimental Test Data
,”
ASME
Paper No. GT2010-22102.10.1115/GT2010-22102
14.
Riegler
,
C.
,
Bauer
,
M.
, and
Kurzke
,
J.
,
2001
, “
Some Aspects of Modelling Compressor Behavior in Gas Turbine Performance Calculations
,”
ASME J. Turbomach.
,
123
(
2
), pp.
372
378
.10.1115/1.1368123
15.
Rademaker
,
E. R.
,
2012
, “
Scaling of Compressor and Turbine Maps on the Basis of Equal Flow Mach Numbers and Static Flow Parameters
,” National Aerospace Laboratory Report (NLR), Amsterdam, The Netherlands, Report No.
NLR-TP-2012-257
.https://reports.nlr.nl/xmlui/bitstream/handle/10921/961/TP-2012-257.pdf?sequence=1&isAllowed=y
16.
Nikolaidis
,
T.
,
2015
,
TURBOMATCH Scheme for Aero/Industrial Gas Turbine Engine
,
Cranfield University
,
Cranfield, UK
, p.
108
.
17.
Vavra
,
M. E.
,
1965
, “
A Graphical Solution to Matching Problem in Closed-Cycle Gas Turbine Plant, DTIC Database
,” USA Naval Post Graduate School, Washington, DC, accessed May 14, 2017, https://archive.org/details/graphicalsolutio45vavr
18.
Jackson
,
A. J. B.
, and
Audus
,
H.
,
2000
, “
Gas Turbine Performance Using Carbon Dioxide as Working Fluid in Closed Cycle Operation
,”
ASME
Paper No. 2000-GT-0153.10.1115/2000-GT-0153
19.
Sethi
,
V.
,
Doulgeris
,
G.
,
Pilidis
,
P.
,
Nind
,
A.
,
Doussinault
,
M.
,
Cobas
,
P.
, and
Rueda
,
A.
,
2013
, “
The Map Fitting Tool Methodology: Gas Turbine Compressor Off-Design Performance Modeling
,”
ASME J. Turbomach.
,
135
(
6
), p.
061010
.10.1115/1.4023903
You do not currently have access to this content.